Table 7-2: Advantages and Limitations of Conventional OWMS Components | OWMS Component | Advantages | Limitations | | | | |--|---|--|--|--|--| | Treatment systems | Treatment systems | | | | | | Septic tank | Low energy requirement Ability to handle shock or intermittent flows Relatively cost effective to increase capacity First step of passive polishing systems Basic maintenance | Primary treated effluent is highly infectious and polluting Limited EAA options without additional treatment Lower DLR for EAA, means larger footprint Higher buffers for EAA EAA requires greater soil depth | | | | | Wet Composting System (WCS) | Low energy requirement Viewed as "green" option Ability to add kitchen scraps Secondary accredited WCS available | Majority of WCS accreditations are only for primary treatment currently Primary accredited WCS limitations as for septic tanks Limited ability to handle shock or intermittent flows as worms require a constant food-source | | | | | Waterless Composting
Toilet (WCT) system | Ability to handle shock or intermittent flows Minimises wastewater generation Little effluent to manage | High operator hands-on maintenance requirements including compost application Limited compost processes in cold climates Requires separate kitchen wastewater and greywater management Specialist management required for sites with large liquid loads | | | | | Aerated Wastewater
Treatment System
(AWTS) | Higher quality effluent produced Wide variety of AWTS are commercially available Low operator maintenance inputs, "set and forget" which is good for rental properties Greater EAA options Reduced buffers for EAA Can be cheaper installation cost than passive application options Small treatment system footprint for 8-10 persons Regular servicing provides additional oversight and knowledge NSW Health accredited STS now tested for shock and intermittent flow | Limited ability to handle shock or intermittent flows unless system designed for such (NSW Health accredited STS now tested for shock and intermittent flow) Ongoing maintenance requirements including costs of service contract High sensitivity of performance to poor maintenance Continuous energy requirement. Specialist design for 'off-grid' sites required Cost of power Not all remote areas have service agents readily available | | | | | Aerobic Sand and Media
Filter (ASMFS) system | Higher quality effluent produced Ability to handle shock or intermittent flows Low energy requirement | Sand may not be available locally Maintenance often left to owner/ operator discretion, with variable results | | | | | OWMS Component | Advantages | Limitations | | | |---|--|---|--|--| | | Greater EAA options Reduced buffers for EAA Minimal running cost Custom sized to flows | Costly damage to sand filter if primary treatment tank not maintained Higher installation cost Treatment system footprint can be larger as must include primary treatment prior to ASMFS | | | | Constructed wetland | Higher quality effluent produced Low energy requirement Viewed as "green" option Basic owner/ occupant completed maintenance Greater EAA options Reduced buffers for EAA Minimal running cost Custom sized to flows Nitrogen reduction | Maintenance often left to owner/ operator discretion, with variable results Costly damage to wetland filtration if primary treatment tank not maintained High installation cost Treatment system footprint larger as must include primary treatment prior to wetland and requires separate EAA | | | | Passive polishing systems | | | | | | Mounds | Can overcome shallow soil limitations (low permeability soils, shallow groundwater) Passively improves effluent quality Low health risk. Subsurface application provides separation to occupants Primary or secondary treated effluent suitable | Energy requirement as pressure dosing required Higher installation costs Not suitable in moderate slope (>15%) areas due to risk of toe seepage Mound can neutralise available space in smaller lots | | | | Bottomless sand filter | Can overcome shallow soil limitations (low permeability soils, shallow groundwater) Passively improves effluent quality Low health risk. Subsurface application provides separation to occupants Primary or secondary treated effluent suitable | Energy requirement as pressure dosing required Higher installation costs Not suitable in moderate slope (>15%) areas due to risk of toe seepage Mound can neutralise available space in smaller lots | | | | Pipe, textile and sand
systems (AES and Eljen) | Passively improves effluent quality Low health risk. Subsurface application provides separation to occupants Primary or secondary treated effluent suitable Can be installed in raised formation for shallow soils | Limited installers | | | | OWMS Component | Advantages | Limitations | | | |---|--|---|--|--| | Recirculating
evapotranspiration
channel systems | Reduces effluent volume or no release option Improved effluent quality No limitation from shallow or no soils | High cost of installation and initial pump out cycle prior to vegetation canopy establishment Concentration of salts within no release option needs addressing in maintenance High maintenance cost and specific maintenance regime Relatively large footprint of pods with large vegetation canopy for most effective performance | | | | Amended soil mounds | Phosphorus reduction Additional polishing treatment if correct sand media used | No additional treatment Poor effluent distribution in surrounding EAA Limited effectiveness for clay soils | | | | EAA systems | | | | | | Absorption systems | Robust Low energy requirement Smaller footprint than irrigation Accounts for wet weather storage and variations in flow Long life, especially if pressure dosed Low health risk. Subsoil application provides separation to occupants Primary or secondary treated effluent suitable | Large EAA in low permeability soils (medium to heavy clays) Specific design required and potential for construction challenges in moderate slope (>15%) areas without specific design Requires deeper soils Higher installation costs than irrigation Higher installation impact (construction and established trees) | | | | Evapotranspiration
Absorption (ETA) trench/
bed systems | Low energy requirement Smaller footprint than irrigation Accounts for wet weather storage Long life, especially if pressure dosed Suitable for lower permeability soils Low health risk. Subsoil application provides separation to occupants Primary or secondary treated effluent suitable | Beds not suitable in moderate slope (>10%) areas without specific design Requires deeper soils Higher installation costs than irrigation Higher installation impact (construction and established trees) | | | | Wick system | Improved evapotranspiration over absorption alone Reduced cost to equivalent ETA trenches or beds As for absorption and ETA systems | Risk of geotextile fabric clogging if installed at base of trench As for absorption and ETA systems | | | | OWMS Component | Advantages | Limitations | | | |-----------------------------|---|--|--|--| | Subsurface Irrigation (SSI) | Beneficial re-use of effluent suitable for lawn and garden areas Can be installed around mature tree driplines Relatively low cost Low health risk. Subsurface application provides separation to occupants Minimal construction impact Pressure compensating drippers reduce the risk of slight variations in slope and zone shape Minimal soil depth required | Requires minimum of secondary treatment. Effluent is commonly disinfected High quality effluent essential or blockages occur Well maintained system required Larger footprint Not suitable in steep slope areas (>30%) without specific design Moderate risk of damage due to shallow depth Can have a shorter lifespan than trenches/ beds Risk of freezing in cold climates | | | | Surface Irrigation (SI) | Minimal construction impact Low cost Beneficial re-use Minimal soil depth required Direct evaporation if not raining Improved large droplet sprinklers available | High health risk. Potential human contact with effluent, especially in small lots or highly trafficable areas Requires minimum of secondary treatment and disinfection Larger footprint Larger buffers for EAA Not suitable in heavy rainfall climate areas Not suitable in moderate slope areas (>10%) due to risk of run-off, especially in wet weather Risk of spray drift High risk of damage High risk of misuse (movable sprinklers) Risk of freezing in cold climates | | | ## Table A5-4: Emergency Management of OWMS | Emergency Situation | Description | OWM Mitigation | |---------------------|--|--| | Heavy rainfall | Saturates soil and enters treatment system components Increased run-on and runoff in EAA | Seal components against water entry Reduce ground surface around treatment system and surcharge gully Maintain good stormwater diversions and cut-off drains for subsoil moisture above treatment system and EAA Fill in any dips or hollows in EAA to encourage stormwater runoff Avoid use of flooded OWMS components Pump out flooded components using a liquid waste contractor. Refill to 2/3 full with fresh water following pump out | | Emergency Situation | Description | OWM Mitigation | |---------------------|---|--| | Flooding | Flood water ingress in treatment system including sediment Damage to electrical components Solids carryover to EAA Flood waters saturate EAA | Prepare for flood event by turning off electrical components and seal off low-lying openings where practical During flood event, avoid contact with contaminated flood water and minimise water usage within house Avoid use of flooded OWMS components Pump out flooded components using a liquid waste contractor. Refill to 2/3 full with fresh water following pump out Contact service technician and/or licensed plumber for system recommissioning before using again after a flood Check for pipe blockages within house and OWMS delivery lines Check for potential hydrostatic uplift of tanks Dry out electrical control and/or fuse boxes and contact a licensed electrician before turning on again. May require replacement of submerged electrical components EAA may need to be replaced or refurbished in the event of solids carryover Spray irrigation nozzles or subsurface drippers should be checked and replaced | | Bushfire | Damage to structural integrity of tanks (particularly plastic and fibreglass) Damage to PVC pipes and plastic irrigation pipework (surface and shallow subsurface) Pumps and electrical component damage Use of wastewater or effluent for firefighting water source | Reduce flammable items around OWMS Install a sign on the treatment tank to clearly identify that it is not suitable for firefighting water source Prepare for bushfire event by turning off electrical components During bushfire event, minimise water usage within house Avoid use of damaged OWMS components Contact service technician and/or licensed plumber for system recommissioning before using after a bushfire Check for tank damage Check for pipe blockages and damaged pipes within house and OWMS delivery lines Contact a licensed electrician before turning on electrical components Spray irrigation nozzles, shallow pipes or subsurface drippers should be checked and replaced | | Electrical outages | Reduced treatment system performance | Contact a licensed electrician before turning electrical components on again Contact service technician and/or licensed plumber for system recommissioning |