# NSW Onsite Wastewater Management Guidelines. 2025

Training for Regulators and Designers

#### **System Sizing**

Centre for Environmental Training

# cet

# Wastewater generation

- Daily Hydraulic Load (L/day) = Design Occupancy (EP) x Design Flow Allowance (L/person/day)
- Always check the requirements of the local water authority when designing in a drinking water catchment
- Design occupancy in domestic settings can be defined as the maximum potential future occupancy of a household based on the number of bedrooms

Centre for Environmental Training



# **Design occupancy**

- Dwellings start at 3EP in the first bedroom, with 1EP per bedroom after (number of bedrooms + 2)
- Buildings with own toilet and laundry are classed as a separate household, starting at 3EP again
- Bedrooms are defined as any room that possesses the potential to be used as a bedroom in the future.
   This is up to the discretion of the council
- · Commercial settings includes staff, visitors, guests
- Short term accommodation is based on available beds, not bedrooms

  Centre for Environmental Training

  Control for Environmental Training

Centre for Environmental Training



#### Design flow allowance

- Design flow allowances can be defined as the daily water use of a development per EP (L/person/day) that will be converted to wastewater
- Table 6-2 flows are based on basic water reduction fixtures (3-star WELS)
- Non-standard water fixtures (spa bath, kitchen food-waste grinders, etc.) are not recommended. If used, flows are to be adjusted to suit increases
- Short-term accommodation should use reticulated water supply flow allowance

Centre for Environmental Training



#### Wastewater generation - scenario

- Daily Hydraulic Load (L/day) = Design Occupancy (EP) x Design Flow Allowance (L/person/day)
- 3-bedroom (5EP) + 2-bedroom house (4EP) = 9EP
- Rainwater tank supply = 120L/person/day
- Daily hydraulic load = 1,080L
- If they used bore water inside, it would be 150L/p/d
- Daily hydraulic load = 1,350L
- If the houses were used for short term accommodation, what would change?

Centre for Environmental Training



#### Septic tank capacity

- Septic Tank Capacity (L) =
   Daily Flow (L/day) + Accumulated Sludge (L)
- Daily Flow (L/day) = Maximum Users (EP) x Peak Flow (L/day)
- Accumulated Sludge (L) = Users (EP) x 80L/person/year x 5 Year Pump Out Cycle
- This allows the use of smaller septic tanks, where NSW Health accredited and economically viable

Centre for Environmental Training



## Sizing for other systems

- Collection wells minimum of 7-days daily flow + 2-days emergency storage
- Aerobic sand and media filter systems sized based on the most limiting of hydraulic and BOD loading rates and the media type and whether it is recirculating or not
- Constructed wetlands volume of the wetland is based on a minimum 5-days of hydraulic retention time and related to the porosity of the gravel used in the wetland

Centre for Environmental Training



### Design loading and irrigation rates

- DLR and DIR are determined on the basis of the textural class and structure of the limiting layer
- DLR and DIR are based on the long-term application of effluent and its impact on the permeability of the soil, not just the indicative permeability of the soil
- Table 6-4 of the Guidelines compiles the DLR and DIR from Tables L1, M1 and N1 of AS/NZS1547:2012

Centre for Environmental Training



# Effluent application area sizing

- The simplest method is the areal calculation, based on hydraulics but not climate
- · Only suitable for sites with no climatic constraints
- Area = Q (daily hydraulic load) ÷ (DLR or DIR)
- Scenario site has sand soils (Category 1), Q = 1,080L, secondary treated effluent
- DLR (beds) = 50mm/day and DIR (SSI) = 5mm/day
- Beds area = 21.6m<sup>2</sup> or SSI area = 216m<sup>2</sup>

Centre for Environmental Training



#### Water balance

- Water balance modelling is to approximate natural water cycle processes using local climate data and applied effluent to determine the minimum EAA
- Water balances can be based on monthly or daily climate data
- Monthly balances are simpler and more conservative than daily balances
- Include rainfall, evaporation, crop factors, void space ratio, retained rainfall coefficient, DLR/DIR

Centre for Environmental Training



#### Figure 6-1 Effluent application water balance



#### Water balance and in soil storage

- In soil storage in a water balance is only suitable for Category 3-6 soils and for absorption or ETA trenches and beds
- In soil storage for irrigation systems and highly permeable soils (Category 1 and 2) should be zero
- Wet weather storage in a tank is not suitable for a domestic OWMS

Centre for Environmental Training



# Scenario – water and nutrient balances

 Work through scenario water and nutrient balances for absorption beds and irrigation

Centre for Environmental Training



## Nutrient balance and nutrient uptake

- Nutrient balance modelling is to approximate natural nitrogen and phosphorus cycle processes using local data to determine the minimum EAA
- Nutrient Uptake Area (NUA) is the area set aside surrounding and downslope of an EAA that allows for further nutrient reduction to background levels before reaching any sensitive receptors
- The NUA should be vegetated and protected from development and not extend into buffers

Centre for Environmental Training





#### Linear loading rate

- DLR assumes that there is no hydraulically limiting layer beneath the base of the EAA
- The linear loading rate should be used where there is a limiting layer, to ensure that the effluent cannot return to the surface as it travels downslope
- LLR takes into account slope, depth to limiting layer, soil texture and structure
- Table 6-5 of the Guidelines sets out LLR (L/m/day)

Centre for Environmental Training

| Soil characteristics |                                        |                                 | Linear loading rates (litres/metre/day) <sup>1</sup> |         |     |                                  |       |     |       |       |     |
|----------------------|----------------------------------------|---------------------------------|------------------------------------------------------|---------|-----|----------------------------------|-------|-----|-------|-------|-----|
|                      |                                        |                                 | <5%                                                  |         |     | Slope<br>5.10%                   |       |     | >10%  |       |     |
|                      |                                        |                                 |                                                      |         |     | pth of natural, unsaturated soil |       |     |       |       |     |
| Soil category        | Soil texture                           | Structure                       | 20 - 30                                              | 31 - 60 | >61 | 20-30                            | 31-60 | >61 | 20-30 | 31-60 | >61 |
| 1                    | Gravels and<br>medium-<br>coarse sands | Structureless                   | 50                                                   | 62      | 75  | 62                               | 75    | 87  | 75    | 87    | 99  |
|                      | Fine sand and<br>loamy sand            | Structureless                   | 43                                                   | 56      | 68  | 50                               | 62    | 75  | 62    | 75    | 87  |
| 2                    | Sandy loams                            | Weakly structured               | 43                                                   | 56      | 68  | 50                               | 62    | 75  | 62    | 75    | 87  |
|                      |                                        | Massive                         | 37                                                   | 43      | 50  | 45                               | 51    | 57  | 62    | 75    | 87  |
| 3                    | Loams                                  | High/ moderate<br>structured    | 41                                                   | 47      | 53  | 45                               | 51    | 57  | 48    | 55    | 61  |
|                      |                                        | Weakly structured or<br>Massive | 25                                                   | 29      | 32  | 30                               | 34    | 37  | 34    | 40    | 46  |
| 4                    | Clay loams                             | High/ moderate<br>structured    | 30                                                   | 36      | 42  | 34                               | 37    | 41  | 37    | 43    | 50  |
|                      |                                        | Weakly structured               | 25                                                   | 31      | 37  | 27                               | 34    | 40  | 30    | 36    | 42  |
|                      |                                        | Massive                         | N/A                                                  | N/A     | N/A | N/A                              | N/A   | N/A | N/A   | N/A   | N/A |
| 5                    | Light clays                            | Strongly structured             | 25                                                   | 31      | 37  | 27                               | 34    | 40  | 30    | 36    | 42  |
|                      |                                        | Moderately structured           | 25                                                   | 31      | 37  | 27                               | 34    | 40  | 30    | 36    | 42  |
|                      |                                        | Weakly structured or<br>Massive | N/A                                                  | N/A     | N/A | N/A                              | N/A   | N/A | N/A   | N/A   | N/A |
| 6<br>NOTES:          | Medium to<br>heavy clays               | Strongly structured             | 25                                                   | 31      | 37  | 27                               | 34    | 40  | 30    | 36    | 42  |
|                      |                                        | Moderately structured           | 25                                                   | 31      | 37  | 27                               | 34    | 40  | 30    | 36    | 42  |
|                      |                                        | Weakly structured or<br>Massive | N/A                                                  | N/A     | N/A | N/A                              | N/A   | N/A | N/A   | N/A   | N/A |

# **Linear loading rate calculations**

- Single bed or end to end bed designs:
   LLR = Design hydraulic load ÷ maximum EAA length along
- For beds placed in parallel (stacked) designs:
  - LLR = (Design hydraulic load ÷ total field area) x total downslope bed width
  - Where
  - Total field area = (total downslope bed width + interbed spacing) x bed length
  - Total downslope bed width = the number of stacked beds x individual bed width

Centre for Environmental Training



# Linear loading rate - scenario

- Scenario absorption bed is 22m² area, Category 1 soil (fine), 2-5% slope, with a limiting layer within 1m of the point of application
- LLR must be <68L/m
- Option 1: Bed is 7m long and 3.2m wide
  - LLR =  $1,080 \div 7 = 154.3$ L/m > 68L/m
- · Option 2: Bed is 19m long and 1.2m wide
  - LLR =  $1,080 \div 19 = 56.9$ L/m <68L/m

Centre for Environmental Training



## Linear loading rate - scenario

- If the beds in Option 1 were split into 3 beds of 7m long and 1.1m wide, installed in parallel 1m apart:
- LLR = (Q ÷ total field area) x total downslope bed width
- Total downslope bed width = 3 x 1.1m = 3.3m
- Total field area = (3.3m + 2m) x 7m = 37.1m<sup>2</sup>
- LLR =  $(1,080 \div 37.1) \times 3.3 = 96.1 \text{L/m}, >68 \text{L/m}$
- The beds would need to be 2.5m apart before LLR <68L/m</li>

Centre for Environmental Training



# Linear loading rate - scenario

- Option 3, if there wasn't sufficient area available to have a bed of 19m long (Option 2), another option would be:
- 2 beds of 11m long, 1m wide, 1m apart:
- LLR =  $(1,080 \div 33) \times 2 = 65.5 \text{L/m}$ , which is <68 L/m
- It doesn't take a significant increase in length to reduce the LLR





