Table 7-1: Constraints to Total OWM | OWM Constraint | Description | Mitigation | | | | |---|---|---|--|--|--| | Small lot size or
limited available
EMA | Limited area for complete hydraulic and nutrient uptake within an EAA Limited available buffers EAA will likely have multiple uses due to limited space | Minimise wastewater generation (water saving fixtures) Source separation approaches (WCT systems and greywater recycling) Improve effluent quality and reduce nutrients (e.g. advanced secondary STS with nutrient reduction) Minimal footprint for treatment system and EAA Nominate optimal exposure EAA if possible | | | | | Slope - flat or convergent | Poor drainage Run-on from surface and subsurface | Divert all run-on, surface and subsurface Modify the ground surface Raised EAA options | | | | | Slope - moderate to steep | Construction challenges Erosion risk Design and installation are critical Future maintenance access | Upslope diversion drains Erosion and sediment controls DIR/ DLR reductions Pressure dosing for even distribution Meet LLR requirements Shallow and narrow trenches or irrigation lines to be installed along the contour Benching where practical Retaining wall designs may be suitable May require geotechnical risk assessment/ advice | | | | | Slope instability or mass movement areas | Onsite effluent application may increase
risk of instability System components may break or fail
during movement events | Minimise wastewater generation DIR/ DLR reductions May require geotechnical risk assessment/ advice | | | | | Flooding/ periodic inundation | Water ingress into treatment system or can overload the system, add flood debris and cause system failure Soil saturation following flood events | Locate the treatment system and electrical components above the 1%AEP flood level Locate the EAA above the 5%AEP flood level Install a pressure seal on lid of treatment systems to prevent water ingress if within flood zone Install electrical components in a raised position if unable to install treatment system above 1%AEP flood level Tank anchoring is critical | | | | | OWM Constraint | Description | Mitigation | | | |---|--|---|--|--| | Climate
(area with heavy
rainfall and
evaporation) | Reduced performance of systems that rely only on evaporation processes Can cause additional run-on to enter the system | Pressure dosed EAA Flood recovery plan for entire OWMS Conservative design, including water balance DIR/ DLR reductions if no water balance Upslope diversion drains EAA with good exposure Pressure dosed subsurface irrigation preferred. Surface irrigation not recommended Absorption systems or ETA systems with in-bed wet weather storage recommended Downslope interceptor bunds/ drains to divert run-off to holding dam Maintenance and oversight are critical | | | | Climate (cold
weather) | Shallow pipes and components may freeze WCT and surface installed tanks may operate less effectively Decrease in efficiency in nutrient uptake Reduced vial die-off | Install distribution pipes at greater depth Avoid shallow or surface pipe designs Install WCT incorporating a heating element Avoid surface installation of treatment tanks | | | | Climate (bushfire prone areas) | Higher chance of system failure from
bushfire damage Shallow PVC pipes may be damaged | Concrete treatment systems preferred over plastic and fibreglass systems as concrete is more resilient to fire damage Subsurface effluent application systems in maintained lawn areas Signage or fencing to protect treatment system and EAA from fire truck damage | | | | Shallow limiting layers (bedrock or water table) | Limited buffers Subsoil treatment processes can be short circuited before effluent enters the receiving environment Groundwater pollution risk Seepage risk | Meet LLR requirements Minimum of secondary treated effluent to reduce required buffers Raised beds or mounds to increase buffer distance Imported soil may be required, with its own limitations Tank anchoring is critical (water table) | | | | Low permeability soils (medium to heavy clays) | More prone to waterlogging and surface seepage | Specialist design including saturated hydraulic conductivity testing (category 5b, 5c and 6 soils) Minimise wastewater generation DIR/ DLR reductions Pressure dosing for even distribution | | | | OWM Constraint | Description | Mitigation | | | |---|---|---|--|--| | | | Alternate dosing between EAA areas (sequencing valve) (e.g. SSI zones or absorption beds) | | | | | | Shallow application into higher permeability upper layers | | | | | | Use of raised application methods, such as a sand mound to improve evapotranspiration | | | | High permeability
soils (sands and
gravels) | Low nutrient retention capacity | Improve effluent quality including disinfection and nutrient reduction processes | | | | | Higher risk to groundwater | Shallow subsurface application with closely spaced irrigation lines and/ or emitters to
maximise evapotranspiration, rather than deep soakage | | | | | | Even effluent distribution critical across whole EAA as movement will be vertical | | | | | | Pressure dosing for even distribution | | | | | | Alternate dosing between EAA areas (sequencing valve) (e.g. SSI zones or absorption beds) | | | | Environmentally sensitive areas ¹ | Protect from the risk of off-site export of contaminants of concern (COCs) contained in effluent. | Conservative design, including water and nutrient balance | | | | | | Improve effluent quality including disinfection (double disinfection) and nutrient reduction processes | | | | | | Subsurface or subsoil application | | | | | | Pressure dosing for even distribution | | | | Fill or disturbed soil | Uneven permeability | Additional investigation for design | | | | | Uneven settlement | Careful fill placement and compaction techniques | | | | | Poor structure | DIR/ DLR reductions | | | | | | Pressure dosing for even distribution | | | | | | Flexible couplings for treatment system and pipework | | | | Off-grid/ solar only
sites | Require no or low energy OWMS | Energy use for electrical components should be considered in a solar budget, including for AWTS | | | | | | Primary treatment with absorption system recommended | | | | | | Passive dosing systems provide a no-energy best practice dosing option | | | | | | Passive polishing systems can provide low energy options | | | | | | Specialist guidance required if using DC pumps | | | 1. Environmentally sensitive areas include drinking water catchments, oyster aquaculture areas, RAMSAR wetlands, and sensitive groundwater.