Table 7-1: Constraints to Total OWM

OWM Constraint	Description	Mitigation			
Small lot size or limited available EMA	 Limited area for complete hydraulic and nutrient uptake within an EAA Limited available buffers EAA will likely have multiple uses due to limited space 	 Minimise wastewater generation (water saving fixtures) Source separation approaches (WCT systems and greywater recycling) Improve effluent quality and reduce nutrients (e.g. advanced secondary STS with nutrient reduction) Minimal footprint for treatment system and EAA Nominate optimal exposure EAA if possible 			
Slope - flat or convergent	 Poor drainage Run-on from surface and subsurface 	 Divert all run-on, surface and subsurface Modify the ground surface Raised EAA options 			
Slope - moderate to steep	 Construction challenges Erosion risk Design and installation are critical Future maintenance access 	 Upslope diversion drains Erosion and sediment controls DIR/ DLR reductions Pressure dosing for even distribution Meet LLR requirements Shallow and narrow trenches or irrigation lines to be installed along the contour Benching where practical Retaining wall designs may be suitable May require geotechnical risk assessment/ advice 			
Slope instability or mass movement areas	 Onsite effluent application may increase risk of instability System components may break or fail during movement events 	 Minimise wastewater generation DIR/ DLR reductions May require geotechnical risk assessment/ advice 			
Flooding/ periodic inundation	 Water ingress into treatment system or can overload the system, add flood debris and cause system failure Soil saturation following flood events 	 Locate the treatment system and electrical components above the 1%AEP flood level Locate the EAA above the 5%AEP flood level Install a pressure seal on lid of treatment systems to prevent water ingress if within flood zone Install electrical components in a raised position if unable to install treatment system above 1%AEP flood level Tank anchoring is critical 			

OWM Constraint	Description	Mitigation		
Climate (area with heavy rainfall and evaporation)	Reduced performance of systems that rely only on evaporation processes Can cause additional run-on to enter the system	 Pressure dosed EAA Flood recovery plan for entire OWMS Conservative design, including water balance DIR/ DLR reductions if no water balance Upslope diversion drains EAA with good exposure Pressure dosed subsurface irrigation preferred. Surface irrigation not recommended Absorption systems or ETA systems with in-bed wet weather storage recommended Downslope interceptor bunds/ drains to divert run-off to holding dam Maintenance and oversight are critical 		
Climate (cold weather)	 Shallow pipes and components may freeze WCT and surface installed tanks may operate less effectively Decrease in efficiency in nutrient uptake Reduced vial die-off 	 Install distribution pipes at greater depth Avoid shallow or surface pipe designs Install WCT incorporating a heating element Avoid surface installation of treatment tanks 		
Climate (bushfire prone areas)	 Higher chance of system failure from bushfire damage Shallow PVC pipes may be damaged 	 Concrete treatment systems preferred over plastic and fibreglass systems as concrete is more resilient to fire damage Subsurface effluent application systems in maintained lawn areas Signage or fencing to protect treatment system and EAA from fire truck damage 		
Shallow limiting layers (bedrock or water table)	 Limited buffers Subsoil treatment processes can be short circuited before effluent enters the receiving environment Groundwater pollution risk Seepage risk 	 Meet LLR requirements Minimum of secondary treated effluent to reduce required buffers Raised beds or mounds to increase buffer distance Imported soil may be required, with its own limitations Tank anchoring is critical (water table) 		
Low permeability soils (medium to heavy clays)	More prone to waterlogging and surface seepage	 Specialist design including saturated hydraulic conductivity testing (category 5b, 5c and 6 soils) Minimise wastewater generation DIR/ DLR reductions Pressure dosing for even distribution 		

OWM Constraint	Description	Mitigation		
		Alternate dosing between EAA areas (sequencing valve) (e.g. SSI zones or absorption beds)		
		Shallow application into higher permeability upper layers		
		Use of raised application methods, such as a sand mound to improve evapotranspiration		
High permeability soils (sands and gravels)	Low nutrient retention capacity	Improve effluent quality including disinfection and nutrient reduction processes		
	Higher risk to groundwater	 Shallow subsurface application with closely spaced irrigation lines and/ or emitters to maximise evapotranspiration, rather than deep soakage 		
		Even effluent distribution critical across whole EAA as movement will be vertical		
		Pressure dosing for even distribution		
		Alternate dosing between EAA areas (sequencing valve) (e.g. SSI zones or absorption beds)		
Environmentally sensitive areas ¹	Protect from the risk of off-site export of contaminants of concern (COCs) contained in effluent.	Conservative design, including water and nutrient balance		
		Improve effluent quality including disinfection (double disinfection) and nutrient reduction processes		
		Subsurface or subsoil application		
		Pressure dosing for even distribution		
Fill or disturbed soil	Uneven permeability	Additional investigation for design		
	Uneven settlement	Careful fill placement and compaction techniques		
	Poor structure	DIR/ DLR reductions		
		Pressure dosing for even distribution		
		Flexible couplings for treatment system and pipework		
Off-grid/ solar only sites	Require no or low energy OWMS	Energy use for electrical components should be considered in a solar budget, including for AWTS		
		Primary treatment with absorption system recommended		
		Passive dosing systems provide a no-energy best practice dosing option		
		Passive polishing systems can provide low energy options		
		Specialist guidance required if using DC pumps		

1. Environmentally sensitive areas include drinking water catchments, oyster aquaculture areas, RAMSAR wetlands, and sensitive groundwater.