NSW Onsite Wastewater Management Guidelines, 2025 Training for Regulators and Designers #### Site and soil evaluation Centre for Environmental Training #### Site and soil evaluation - Section 4 - "Site and soil evaluation should follow a systematic approach to the collection, recording and interpretation of information on a suitable scale and depth for the purposes of the investigation." - "SSE is required for all unsewered developments where effluent is to be wholly or partially managed onsite." Centre for Environmental Training # **Purpose of SSE** - · The SSE is intended to: - Identify site and soil characteristics significant to the OWMS selection, location and size - Assess capability to sustainably manage all wastewater within allotment boundaries - Quantify risk and gathers relevant information to inform the design process and formulate a sustainable design - Enable the regulator to make an informed decision on the viability of an unsewered development proposal Centre for Environmental Training #### Who should complete a SSE? - Suitably qualified and experienced professionals, with appropriate training, technical expertise and experience in site and soil evaluation and onsite wastewater design, to meet the requirements of council - Councils may require written verification of qualifications, experience, professional affiliations and professional indemnity insurance - Application assessors should have suitable qualifications and experience too, but it is rare Centre for Environmental Training #### Steps in a SSE and OWM design - · Site details - · Desktop study - Field evaluation to fill data gaps - · Constraint (risk) analysis - Risk mitigation - · OWMS (treatment system and EAA) design - Detailed site plans - · Management and maintenance Centre for Environmental Training #### **Desktop study** - Collate previously mapped information to develop a preliminary overview of the site (constraints map) - · Identify data gaps for further investigation - · Identify unsuitable site or soil conditions for OWM - Target locations for soil boreholes or test pits - Desktop studies are a suitable first step for all levels of investigation for development (rezoning, subdivision, or individual lot design) #### A critical issue - One of the critical issues when collating data from different sources to include in a GIS project is that the coordinate reference systems are correct for each layer in the project - Data must be georeferenced correctly so that all imported layers are aligned in the project Centre for Environmental Training # **Desktop data to collect** - Cadastre and planning mapping (lot boundaries, roads, land zoning and planning specifications) - Topographic mapping (contours, landscape position, landform and surface hydrology) - Imagery (aerial photos current and historic) - Geological and soil mapping (soil landscapes, soil test data) - Groundwater resources (domestic and public supply bores and wells) Centre for Environmental Training # Scenario 1 Legerd Proper Boundary Waterbook Controlled to the # Desktop data to collect - Land use mapping (adjacent and regional context e.g. agriculture) - Environmental overlays (flooding, bushfire, ecology and drinking water catchments) - Location of services (water, electricity, gas etc.) - Plans or strategies relating to OWM (development strategies, lot size requirements, backlog sewer) - Site development (existing, approved or proposed) # Additional desktop data - Climate data (rainfall and evaporation) 30+ years - Local knowledge OWMS limitations (poor soils, shallow rock, groundwater, seasonal inundation) - · Owner discussion - · Resourcing / capacity and understanding - · Existing OWMS on the site - Existing unmapped services or usage patterns (electricity, water, tracks) Centre for Environmental Training # **Desktop preliminary buffers** - Buffer off mapped constraints to provide a preliminary available EAA to field investigate - This preliminary desktop assessment and buffering may indicate that some OWMS options aren't viable on some sites - These will focus fieldwork investigations and soil testing locations Centre for Environmental Training # Scenario 1 - preliminary buffers Centre for Environmental Training Site features - Once the fieldwork has been completed, the full SSE can be completed - Table 4-1 considers site features and their risk rating for OWMS (treatment, EAA or both) - This table can be used in the SSE and by application assessors to determine if all limiting features on the site have been considered and appropriately mitigated, where needed | Site Feature | Relevant System(s) | | | | | |---|---|--|---|---|--| | | | Minor Limitation | Moderate
Limitation | Major Limitation | Restrictive Feature | | Geology/
regolith | All EAA systems | N/A | N/A | Major geological
discontinuities,
fractured or highly porous
bedrock or regolith | Groundwater
pollution hazard | | Shallow bedrock | In ground treatment
systems and all EAA
systems | N/A | N/A | Bedrock at shallower
depth than tanks or
effluent application
systems | Difficult excavation
Low saturated hydraulic
conductivity
Shallow limiting layer (see
Table 4-5) | | Rocks and rock outcrops
(% of land surface
containing rocks (floaters)
>0.2m diameter) | All EAA systems | <10% | 10-20% | >20% | Limits EAA system
performance
Provides preferential flow par
Difficult excavation | | Fill | All OWMS | No fill | Fill present | N/A | Subsidence
Variable permeability | | Landform | All OWMS | Hill crests,
divergent slopes
and plains | Convergent
slopes and foot
slopes | Drainage plains and
incised channels | Groundwater
pollution hazard
Resurfacing hazard | | Stope % | Subsurface irrigation | 0 - 20 | 20 - 30 | >30 | Difficult installation
Linear Loading Rate (LLR
Run-off
Erosion | | | Surface irrigation | 0-5 | 5 - 10 | >10 | Difficult installation
LLR
Run-off
Erosion | | | Evapotranspiration
Absorption (ETA)/
Absorption system:
trench | 0 - 10 | 10 - 20 | >20 | Difficult installation
LLR
Run-off
Erosion | | | ETA/ Absorption
system:
bed | 0 - 5 | 5 - 10 | >10 | Difficult installation
LLR
Run-off
Erosion | | Site Feature | Relevant System(s) | | | | | |-------------------------------|-------------------------------------|---|------------------------------|--|---| | | | Minor Limitation | Moderate
Limitation | Major Limitation | Restrictive Feature | | | Mound | 0 - 10 | 10 - 15 | >15 | Difficult installation
Large volume of sand require
Risk of toe seepage | | Erosion potential | All EAA systems | No signs of
erosion potential
present
Well vegetated | Absence of
vegetation | Signs of erosion present,
e.g. rills, mass movement
and slope failure | Soil degradation
Transport System failure | | Run-on and
upslope seepage | All EAA systems | None | Some - diversion
possible | High - diversion not
practical | System inundation
Transport of effluent off-site | | Flood potential | All treatment systems | Vents, openings,
and electrical
components
above 1 in 100-
year flood contour | N/A | Vents, openings, and
electrical components
below 1 in 100-year flood
contour | Transport of effluent off-site
System failure and
electrocution hazard | | | All EAA systems | Rare; above 1 in
20-year flood
contour | N/A | Frequent; below 1 in 20-
year flood contour | System inundation. Transpor
of effluent off-site | | Site drainage | All effluent application systems | No visible signs of
surface
dampness | N/A | Visible signs of surface
dampness, e.g. moisture-
tolerant vegetation
(sedges and ferns),
seeps, springs | Groundwater
pollution hazard
Resurfacing hazard | | Exposure | All effluent application systems | High sun and
wind exposure | N/A | Low sun and wind
exposure | Poor evapotranspiration | | Land area | All systems | Area is available | N/A | Area is not available | Health risk
Pollution risk | | Buffer distance | All effluent
application systems | (see Section 4.3.2
and Table 4.2) | N/A | N/A | Health risk
Pollution risk | | IOTES | All effluent application systems | and Table 4 2) | | N/A
eduction measures must be a | Health risk
Pollution risk | #### Site features - scenario - Go through the site features scenario example using the desktop assessment slides - Consider what impact the site features could have on the OWM design and possible mitigation measures that could be used Centre for Environmental Training # cet # Soil features - terminology - · Standardised terminology across the Guidelines - Point of application effluent, e.g. emitters, base of bed or trench - Separation distance minimum 0.6m # Soil features - terminology - Limiting layer the layer of soil with the lowest saturated hydraulic conductivity or any other limiting layer, such as a hard pan, bedrock, water table, or seasonal high water table (soil mottling), within 0.6m beneath the point of application. The design loading rate is based on the saturated hydraulic conductivity of the limiting layer - Free-draining soil soil, beneath the point of application and above any limiting layer, through which effluent can pass freely under gravity Centre for Environmental Training # Soil investigations - Soil investigations should adequately characterise the soil in the proposed EAA - Minimum 1 test pit and 2 boreholes in available EAA - Significant soil variation = additional pits/ holes - Minimum depth = 0.6m below proposed point of application, or 1.0m, whichever is deeper (i.e. 1.2m for trenches) - · Record location, depths, layer details, photos | Soil Feature | Relevant System | Risk Rating | | | Restrictive Feature | |--|---|------------------|---------------------|-------------------------------|---| | | Relevant System | Minor Limitation | Moderate Limitation | Major Limitation ¹ | nestrictive reature | | Depth to bedrock or
hardpan (m) | Subsurface irrigation | >1.0 | 0.75 - 1.0 | <0.75 | Possible waterlogging
Increased risk of runoff
May limit plant growth (trees) | | | Surface irrigation | >1.0 | 0.6 - 1.0 | <0.6 | Possible waterlogging
Increased risk of runoff
May limit plant growth (trees) | | | Absorption system | >1.5 | 1.2 - 1.5 | <1.2 | May restrict seepage
Resurfacing hazard
Groundwater pollution hazard | | Depth to high episodic/
seasonal water table (as
evidenced by mottling)
(m) | Subsurface irrigation | >1.0 | 0.75 - 1.0 | <0.75 | Resurfacing hazard
Groundwater pollution hazard | | | Surface irrigation | >1.0 | 0.6 - 1.0 | <0.6 | Resurfacing hazard
Groundwater pollution hazard | | | Absorption system | >1.5 | 1.2 - 1.52 | <1.2 | May restrict seepage
Groundwater pollution hazard | | Soil Category ³ | Subsurface irrigation
Surface irrigation | 2b, 3 and 4 | 1, 2a, 5 and 6 | | Excessive run-off,
waterlogging
Percolation | | | LPED | 2, 3 and 4 | 5 | 1 and 6 | | | | Evapotranspiration
Absorption system | 4 and 5 | 64 | 1, 2 and 3 | | | | Absorption system | 3 and 4 | | 1, 2, 5, and 6 | | | Coarse fragments (%) | All EAA systems | <20 | 20 - 40 | >40 | Preferential flow pathways through so
May restrict plant growth
May impede installation | | Soil Feature | Relevant System | | Risk Rating | -0.00 | | |---|--|--|--|--|---| | | | Minor Limitation | Moderate Limitation | Major Limitation ¹ | Restrictive Feature | | Bulk density (g/cm²) | All EAA systems
Sandy loam
Clay loam
Clay | <1.8
<1.6
<1.4 | | >1.8
>1.6
>1.4 | indicator of permeability
May restrict plant growth | | pH ^s | All EAA systems | >6.0 | 4.5 - 6.0 | <4.5 | May inhibit plant growth | | Electrical conductivity
(EC) (dS/m) | All EAA systems | <4 | 4-8 | >8 | Excessive salt may restrict plant growth | | Sodicity
(exchangeable sodium
percentage) (ESP) ⁵ | Subsurface irrigation
Surface irrigation
(0-0.4 m) | <5 | 5-10 | >10 | Potential for structural degradation | | | Absorption system
(0-1.2m) | | | | | | Cation exchange
capacity (CEC)
(cmol*/kg) (0-40cm) ^{5, 6} | Subsurface irrigation
Surface irrigation | >15 | 5-15 | <5 | Indicator of soil fertility
Unable to hold plant nutrients | | Phosphorus sorption
(kg/ha) | All EAA systems
(0-100cm for irrigation)
(100cm below intended base
of trench) | >6,000
(approximately
375 mg/kg) | 2,000-6,000 | <2,000
(approximately
125 mg/kg) | Unable to immobilise any excess P | | Modified Emerson
Aggregate Test
(dispersion class) ⁵ | All EAA systems | Class 3, 7, 8 | Class 2 | Class 1 | Potential for structural degradation | | NOTES: 1. Sites with major lir 2. Presence of soil we 3. See Table 4-7 for si 4. ETA systems are or 5. May require soil ar | nitations are generally not suitablister might indicate soil conditions all category information. Illy suitable for use with a minimu melioration where a moderate or ome more sodic with effluent apport more sodic with effluent apport. | that facilitate moveme
m of secondary treated
major limitation is iden | nt of nutrients and other of effluent in category 6 soil | contaminants into the gr | | # Soil features - scenario - Go through the soil features scenario example using the scenario soil data - Consider what impact the soil features could have on the OWM design and possible mitigation measures that could be used Centre for Environmental Training # **SSE** for tiny houses - Exemption from full SSE requirements for specific tiny house situation: - 1 bedroom, 3 occupants, stand alone OWMS, waterless composting toilet, no flushing toilet, dishwasher or bath - 1 borehole in EAA, limiting layer texture test and modified Emerson Aggregate Test - Recommended absorption bed lengths based on soil category only - · Very conservative design