On-site Wastewater Management **Training Course**

Secondary Treatment

Aerated Wastewater Treatment Systems (AWTS)

Centre for Environmental Training

Aerated Wastewater Treatment Systems (AWTS)

- · Mechanical secondary treatment systems incorporating aeration
- Mirror treatment processes of larger wastewater treatment plants using small tank(s) suited to a domestic setting
- Known as Aerated Wastewater Treatment Systems (AWTS) (AS/NSZ1546.3 2008), or Secondary Treatment Systems (STS) (AS1546.3
- Also known as Aerated Treatment Units (ATUs) or Household Package Plants Centre for Environmental Training

AS1546.3:2017

Australian Standard AS1546.3:2017 On-site domestic wastewater treatment units. Part 3: Secondary treatment systems (Standards Australia 2017) covers:

- Performance criteria / design requirements
- Minimum marking requirements
- Information to be provided with the system
- Product conformity evaluation for type testing

Centre for Environmental Training

Design Load

AS1546.3:2017 stipulates the following design load characteristics:

- · Minimum daily flow of 150 litres per person
- Average daily BOD₅ 70 grams per person
- Average daily TSS 70 grams per person
- Average daily total nitrogen 15 grams per
- Average daily total phosphorus 2.5 grams per person

Centre for Environmental Training

Variety of Systems

- Wide range of older AWTS (AS/NZS1546.3 2008) and newer STS (AS1546.3 2017) designs and configurations (~100 models on AUS market)
- · Large number of Australian and overseas manufacturers (~30 manufacturers)
- Many brands and models discontinued, no longer accredited, but still in operation
- Older systems have often been modified
- New brands and models entering market

Centre for Environmental Training

Variety of Systems

- Wide variety of systems and processes, but some similarities due to compliance with the Standards
- Some differences between systems accredited under 2008 and 2017 Standards
- Understanding of basic processes is important
- Performance commonly variable
- Many AWTS prove challenging to operate well
- Evidence is that, at any time, >50% of systems may be operating poorly or failing

Configurations

- Most systems comprise 1 or 2 tanks, with between 3 and 6 separate chambers
- The tanks are constructed from either concrete, polypropylene or fibreglass

The Aims of Secondary Treatment

- · Improve effluent quality
- Generate effluent which can be applied at higher loading rates than Primary treated effluent
- · Reduce land area required for safe disposal
- · Reduce impact on receiving environment
- Remove pathogens and possibly some nutrients
- · Reduce impact on surface / ground waters
- Provide reuse water for landscaping

Centre for Environmental Training

Treatment Stages

Typically four treatment stages:

- · Anaerobic digestion (Primary treatment)
- · Aerobic digestion (Secondary treatment)
- · Clarification (settling)
- Disinfection

Centre for Environmental Training

Anaerobic Digestion / Primary Treatment

- Can be in a separate septic tank or chamber(s) within a segmented single tank system
- Minimum of 24 hours detention required to maximise settling and moderate peak flows
- STS Primary chambers ~2,300L ~3,500L
- · Physical, chemical and biological processes:
 - Sedimentation of solids (sludge layer)
 - Flotation (scum layer)
 - Clarification (partial)
 - Anaerobic degradation of organic material (BOD₅)

Centre for Environmental Training

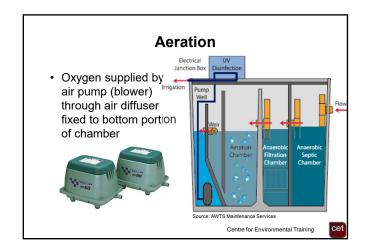
Crust and Sludge Accumulation

- Crust important to maintain anaerobic conditions and prevent the escape of gases and odours
- · Sludge accumulates at base of tank
- Progressively reduces the effective capacity of system and will require periodic removal

Centre for Environmental Training

Anaerobic Upflow Filter

- Accelerates anaerobic breakdown and methane generation
- Improves solids stabilisation
- e.g. FujiClean ACE1200



- Returns sludge from the clarification chamber or aeration chamber the Primary chamber
- Adds to sludge accumulation in Primary chamber
- Return to inlet tee to avoid disturbing crust
- · Assists with de-nitrification

Aeration

- Oxygen transfer efficiency is highly dependent upon diffuser type and bubble size (surface area)
 - Larger bubbles transfer minimal oxygen to the water
 - Fine bubbles transfer up to 80% of the available oxygen to the water column

Centre for Environmental Training

Aeration

- Rising bubbles transfer oxygen to the biomass and mix the wastewater to allow maximum contact with treatment surfaces
- Air promotes oxidation and microbiological consumption of the organic matter
- Factors impacting aerobic treatment are:
 - Volume of oxygen supplied (need to consider additional nonprocess requirements such as air lifts)
 - Rate/timing of oxygen supply (variable demand)
- Aerobic process requires a dissolved oxygen concentration (DO) >2mg/L

Centre for Environmental Training

Aerobic Processes

- Aeration facilitates the conversion of suspended and dissolved organic materials to energy, biomass and wastes
- · Efficient process for the removal of:
 - Carbonaceous organic matter (BOD and TOC)
 - Nutrients (N and P), and for
 - Waste (sludge) stabilisation
- · Can be by way of:
 - Attached Growth Processes
 - Suspended Growth Processes
- · Both can achieve a high level of BOD removal

Centre for Environmental Training

Attached Growth Processes

- Fixed or Floating Media (FM) systems
- · Trickling Filter (TF) systems
- Rotating Biological Contactor (RBC) systems
- Typically require Primary sedimentation to remove coarse solids and avoid clogging
- Systems typically utilise a high surface area media (mineral or synthetic) or discs or drums to support the growth of a biological film (biofilm)

Attached Growth Processes

- Inert media comprise plastic tubes, sheets or mesh with large surface area / volume ratio
- Chamber may contain fixed-submerged or free floating media. Fixed media most common
- · Microorganisms attach to media to form biofilm
- Wastewater contacts biofilm
- · Food is brought to microbes
- Microorganisms consume or convert organic material as part of their metabolic processes
- Attached or 'fixed-film' processes remove fine or dissolved organic matter from wastewater

Centre for Environmental Training

Attached Growth Floating Media

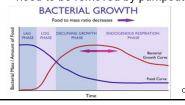
 Predominantly attached growth, but typically a hybrid of suspended / attached growth processes

Centre for Environmental Training

Attached Growth

- Biofilm consists of aerobic and facultative bacteria, fungi, algae and protozoans
- Worms, larvae and snails may also be present in non-submerged systems
- Media are self cleansing excess biological film sloughs off and is transferred in suspension to the clarification chamber to settle and accumulate
- Oxygen is provided either passively (Trickling Filter and Rotating Biological Contactor) or mechanically by use of a air pump/blower

Centre for Environmental Training



Trickling Filter Trickling Filter Centre for Environmental Training

Aerobic Treatment

- Aeration chambers are sized to ensure endogenous respiration occurs
- Over time dead cell mass and residuals will accumulate in the chamber and will eventually need to be removed by pumpout

Centre for Environmental Training

Aerobic Treatment

- Most systems rely on continuous flows and have limited ability to buffer flows
- Systems require careful consideration of hydraulic and organic loading rates
- Treated effluent requires clarification to remove sloughed biofilms and residual solids
- Some sludge may be returned to the treatment reactor to assist with denitrification

Centre for Environmental Training

Aerobic Treatment

- Aerobic treatment can be impacted by a variation in hydraulic or organic loads
- · Factors impacting aerobic treatment are:
 - Volume/rate/timing of oxygen supply
 - Food/microorganism ratio (F/M)
 - Temperature and pH
 - Sludge return ratios and wasting (sludge age)
- AWTS experience constant variations in the above factors and can rarely be left as installed

Centre for Environmental Training

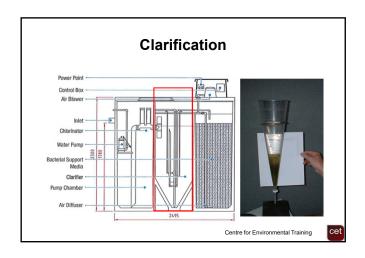
Design/Process Controls

- The air supply and sludge return systems require regular monitoring and adjustment to ensure optimal system performance
- Air-lift transfer at controlled rates is a more common feature of STS, but requires greater air supply
- Higher rate sludge return may be used to "dilute" influent

Centre for Environmental Training

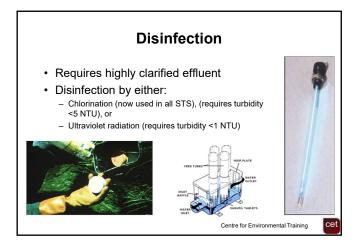
Nutrient Removal

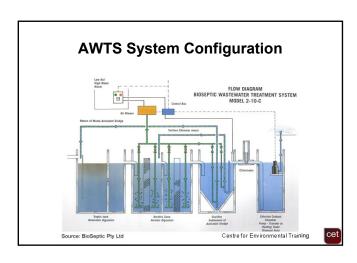
- Two baffled aeration chambers allow managed oxygen control for nitrification and denitrification
- Few STS have defined nutrient reduction levels
- AS1546.3 2017 requires TN<15mg/L, TP<2mg/L
- Certification may state % nutrient reduction (e.g. FujiClean ACE 1200: 79.05% reduction in TN and 14.50% reduction in TP), but removal depends on nutrient concentrations in influent
- Generally no P reduction other than by sedimentation

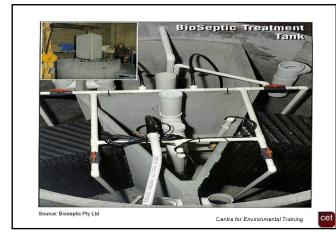

Centre for Environmental Training

Clarification

- Provides settling of solids from aerobically treated effluent in quiescent conditions
- May utilise a funnel (Imhoff) design to concentrate settled sludge and minimise re-suspension
- In smaller systems, waste activated sludge (WAS) is typically returned to inlet tee of the Primary chamber by the sludge return
- Skimmer may remove floatable flocs and debris (sometimes to the aeration chamber to assist with denitrification)




Clarification


- Eventually some sludge will need to be removed from the aeration chamber by pumpout
- High F/M ratio more food than microbes will result in poorer BOD reduction and poorer final effluent quality
- However, some additional food (carbonaceous source) is needed in the aeration chamber to assist with denitrification and this may be supplied by sludge return

Centre for Environmental Training

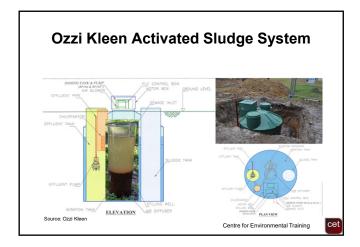
Suspended Growth Processes Activated Sludge Systems

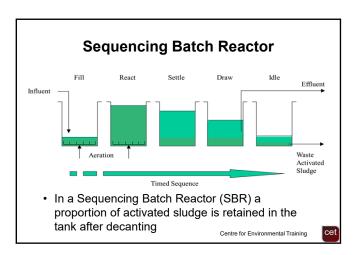
- Activated Sludge is the principal aerobic suspended growth process in AWTS
- Blends raw or Primary treated wastewater with a retained population of microbes in suspension in an aerobic reactor (Mixed Liquor)
- Microbes consume or convert organic material as part of their metabolic processes
- Process requires a dissolved oxygen (DO) concentration >2mg/L

Suspended Growth Processes

- Treated mixture requires clarification to remove flocculent microorganisms from the waste stream
- A proportion is returned to the aerobic reactor (Return Activated Sludge)
- Various adaptations to the basic process address issues such as:
 - Nutrient removal
 - Small flows
 - Intermittent or low-strength flows
 - Operational simplicity

Centre for Environmental Training


cet


Suspended Growth Processes

- Process performance can be limited by various environmental and chemical factors:
 - Temperature cold (slow), warm (fast) metabolism
 - pH 6.0-9.0, prefer limited variation (6.5-7.5)
 - Available oxygen (DO) 2mg/L to 3mg/L + mixing
 - Alkalinity for nitrification (min 50-100mg/L as CaCO₃)
 - Essential nutrients CNP ratio (100:10:1)
 - · Inhibiting substances
- Above are rarely managed in domestic AWTS

Centre for Environmental Training

cet

Graf E-Pro SBR Source: Graf Centre for Environmental Training

AWTS Treatment Summary

- Treatment efficiency is highly dependent on even and constant hydraulic and organic loads
- Domestic wastewater is highly variable in quantity and quality (short and long term)
- AWTS are sensitive to biocides (e.g. bleaches, disinfectants, antibiotics)
- AWTS can remove up to 90% BOD₅ and TSS, but less effective at thermotolerant coliform removal
- AWTS do not significantly reduce N or P without careful management and design modifications

Performance Objectives (90th percentile)

- Biochemical oxygen demand (BOD₅) ≤20mg/L
- Total suspended solids (TSS) ≤30mg/L
- Chlorination (if applied)
 - Thermotolerant bacteria median ≤10 cfu/100
 - Total chlorine 0.5 2.0mg/L

Centre for Environmental Training

References

- Standards Australia/Standards New Zealand (2008) AS/NZS1546.3:2008 On-site domestic wastewater treatment units. Part 3: Aerated wastewater treatment systems
- Standards Australia (2017) AS1546.3:2017 Onsite domestic wastewater treatment units. Part 3: Secondary treatment systems