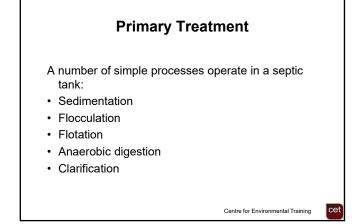
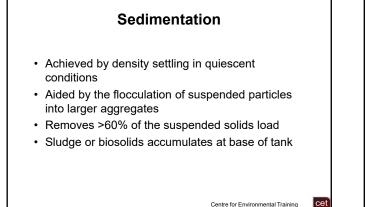
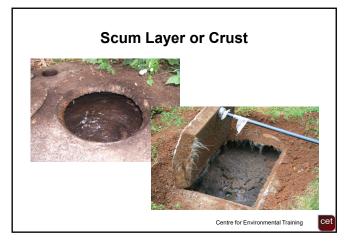
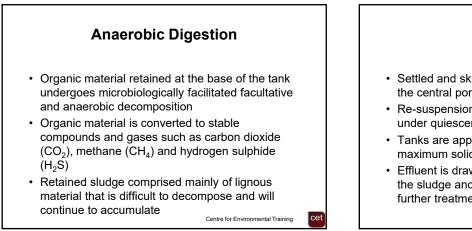

Baffles

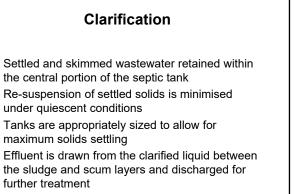
- May include a partition or baffle divider to assist with hydraulic buffering and reduce carry-over of solids
- Baffle required if tank is >2,050L capacity (NSW Health 2016)



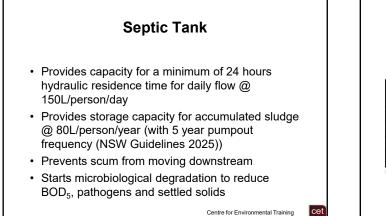





Flotation


- Fats, oils, grease, surfactants and other low density materials rise to the surface and form a scum layer
- Scum retained in the tank by an inverted outlet pipe (tee) or baffle
- Fully formed scum layer precludes oxygen, creates anaerobic conditions which assists in the breakdown of organic solids and prevents escape of odours

Centre for Environmental Training



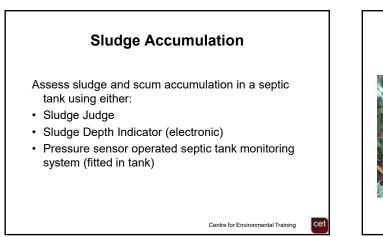
Centre for Environmental Training

Septic Tank Capacity (AS/NZS1547:2012)

All-waste septic tank capacities

	optio tariit oap		
Persons	Bedrooms	Average daily flow (L)	Tank capacity
1 - 5	1-3	Up to 1,000L	3,000L
6 - 7	4	1,000 - 1,400L	3,500L
8	5	1,400 - 1,600L	4,000L
9 - 10	6	1,600 - 2,000L	4,500L
Source: Standards Australia St	andards New Zealand		

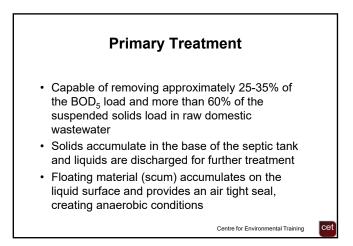
· Note tank size requirements for larger houses

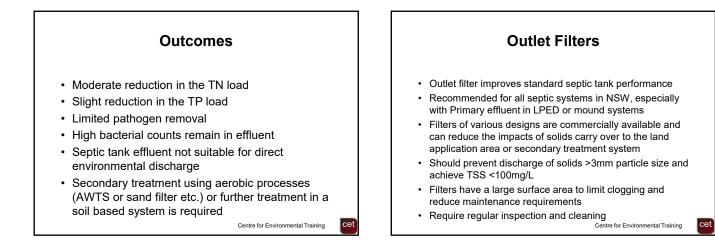

Centre for Environmental Training

Septic Tank Capacity (NSW Guidelines 2025) lydrauli (L/day) (EP) 3 (Tiny House) 275 1,350 3 450 1.650 4 600 2,200 5 750 2,750 900 3,300 6 1,050 3,850 1,200 4,400 8 1,350 9 4,950 10 1,500 5,500 Add 600L for 300L spa bath Centre for Environmental Training

Sludge Accumulation

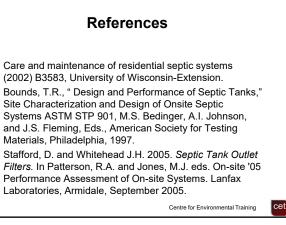
- Sludge in a residential all-waste septic tank accumulates at approximately 80L/person/year
- Pumpout interval is determined by tank capacity required for 24-hour residence time for daily load (varies from system to system)
- For example, a 3,000L septic tank provides 24hour residence time for 1,000L daily load, plus up to 2,000L sludge and scum capacity i.e. 5 persons x 80L/person/year x 5 years

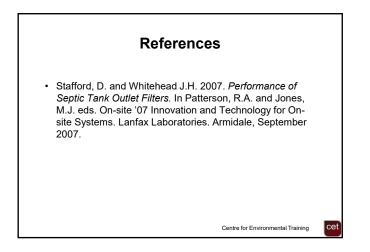

Centre for Environmental Training



3.4

Parameter	Untreated domestic wastewater	Primary treated effluent	
BOD₅	200 - 300 mg/L	~ 150 mg/L	
Suspended Solids	200 - 300 mg/L	~ 50 mg/L	
Total Nitrogen	20 - 100 mg/L	50 - 60 mg/L	
Total Phosphorus	10 - 25 mg/L	10 - 15 mg/L	
Faecal Coliforms	10 ³ - 10 ¹⁰ cfu/100mL	10 ⁵ - 10 ⁷ cfu/100mL	





	Outlet Filter Performance								
	Co	ncentration (mg	ı/L)						
Parameter	Typical ST effluent	Without effluent filter	With effluent filter	% Improvement					
BOD₅	450	180	130	28%					
TSS	503	80	50	38%					
NH ₃ -N	41	40	40	0%					
Org. N-N	29	28	28	0%					
TKN-N	70	68	68	0%					
Org. P-P	6.5	6	6	0%					
Inorg. P-P	11	10	10	0%					
TP	17	16	16	0%					
Oil and grease	164	25	15	40%					
Source: Crites & Tchobanoglou	s 1998		Centre for Envir	onmental Training					

Septic Tank Calculations

Question 1.

A new three bedroom house is supplied with reticulated water and has a 3,000L septic tank installed on construction. Assume that five people occupy the house.

- (i) Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
- (ii) Calculate the detention time of effluent in the septic tank at the outset.

(iii) If sludge accumulates at the rate of 80L/person/year, calculate the amount of sludge that will accumulate in one year.

Question 2.

An older three bedroom house is supplied with reticulated water and is occupied by three people. On inspection, it is determined that the septic tank is of 2,300L capacity, but the tank is half full of sludge.

- (i) Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
- (ii) Calculate the annual sludge accumulation based on a sludge accumulation rate of 80L/person/year.
- (iii) A minimum of 24 hours detention must be maintained in the tank at all times. Calculate the length of time remaining before a pumpout will be required.

040924

Septic Tank Calculations

ANSWERS

Question 1.

- (i) Daily hydraulic load = 5 x 150L/person/day = 750L/day
- (ii) Septic tank volume = 3,000LDaily hydraulic load = 750L/dayDetention time = 3,000L / 750L/day = 4 days
- (iii) Occupancy = 5 persons
 Sludge accumulation rate = 80L/person/year
 Annual sludge accumulation = 5 persons x 80L/person/year = 400L/year

Question 2.

- (i) Daily hydraulic load = 3 x 150L/person/day = 450L/day
- (ii) Occupancy = 3 persons
 Sludge accumulation rate = 80L/person/year
 Annual sludge accumulation rate = 3 persons x 80L/person/year = 240L/year
- (iii) Tank capacity = 2,300L
 Daily hydraulic load = 450L
 Volume of sludge in tank = 2,300L / 2 = 1,150L
 Volume available for further sludge accumulation = 1,150L 450L = 700L
 Sludge accumulation rate = 240L / year
 Maximum time remaining prior to pumpout 700L / 240L/year = 2.9 years