

Terminology

Evapotranspiration Systems referred to as:

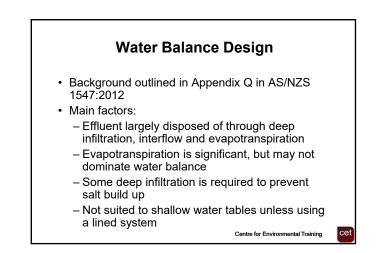
- Evapotranspiration Absorption Systems ETA Australia (unlined)
- Evapotranspiration Seepage Systems ETS New Zealand (unlined)
- · Or simply Evapotranspiration Systems ET, if lined

Centre for Environmental Training

ETA/S Systems designed to:

- · Maximise evapotranspiration
- · Reduce absorption (drainage) in unlined systems
- · Avoid absorption in lined systems
- Provide alternative to conventional trenches/beds in areas of low permeability soils (<0.5-1.5 m/d) e.g. clay loams, light, medium and heavy clays

Centre for Environmental Training


- Table L1 (AS/NZS 1547:2012) and table 6-4 (NSW Guidelines) give recommended DLRs of between 12 mm/d (CL) and 5 mm/d (LC/MC) based on soil texture
- Secondary treated effluent is required in Category 6 soils
- Not necessary for annual evaporation to exceed annual precipitation
- Can use plant transpiration and void space storage to manage hydraulic load throughout seasons

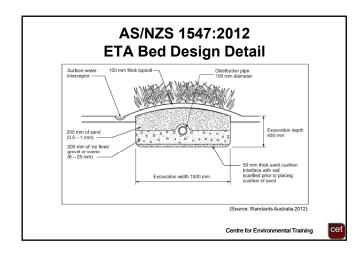
Centre for Environmental Training

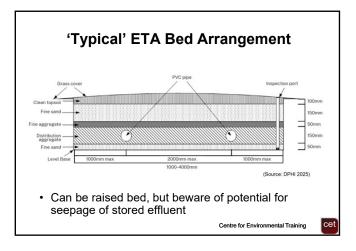
AS/NZS 1547:2012 and NSW Guidelines

- · DLRs are conservative values
- Any variation to be justified by full water balance for 12-month cycle (Appendix Q)
- No higher DLRs for Secondary treated effluent (may be better to use conventional trench or bed)
- Plant with grasses and shrubs which tolerate wet conditions and have high evapotranspiration capacity
- Construction outlined in Appendix L (AS/NZS 1547:2012) and Section A4.5.1 (NSW Guidelines)

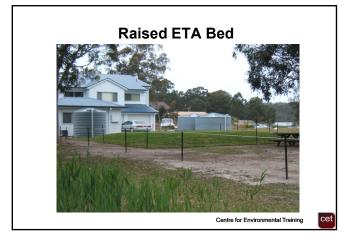
Centre for Environmental Training

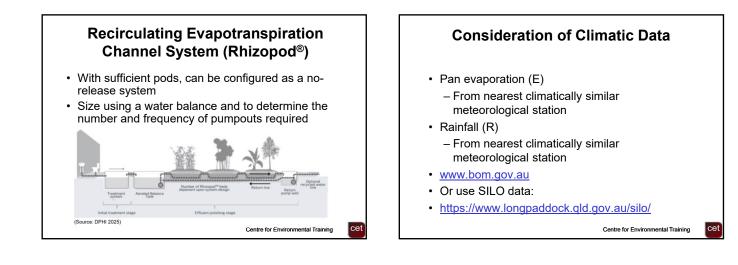
Important Components in ET Bed Design

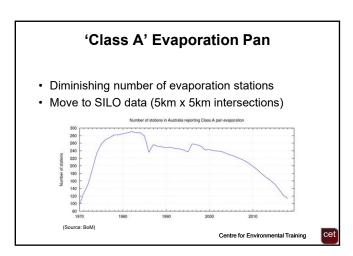

- Crop Factors (Cf), Evaporation (E) and Evapotranspiration (ET) – explained further in water balance example later
- Capillary Water movement of water laterally and upwards under surface tension
- Field Capacity (FC) upper limit of available water storage in soil / medium
- Void Ratio (n) proportion of bed available for water/air storage

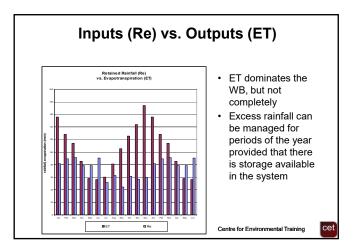

Centre for Environmental Training

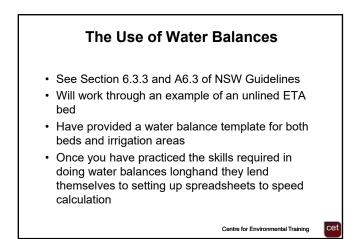
ETA Bed Design Considerations


- Generally constructed subsurface, with mounded upper surface to reduce rainfall ingress
- Suited to slopes <10%
- Consider Linear Loading Rate; Section 6.4 NSW Guidelines
- · Prefer good exposure to sun and wind
- · Maximum bed length 20m if gravity fed
- · Prefer pressure dosing to ensure even distribution
- May require downslope Nutrient Uptake Area (NUA) see Section 6.3.4 NSW Guidelines. Size with nutrient balance.


Centre for Environmental Training



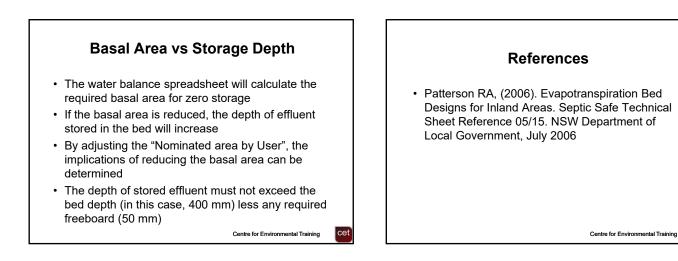




 Calculate the minimum basal area (m²) of an evapotranspiration-absorption area for a three bedroom / five person dwelling with tank water supply
BoM raisfall and non evaporation data (grap factor)

Site name	: RICHN	OND - UW	/S HAWKE	SBURY	Site numb	per: 06702	1					
Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Decile 5 (median) rainfall (mm)	74.3	75.8	66.5	50.4	30.9	38.6	27.6	24	32.8	43.2	66.2	55.6
Mean daily evaporat ion (mm)	5.9	4.9	4	3	2.1	1.7	1.9	2.7	3.8	4.6	5.2	5.7
Crop factor	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8

Water Balance Exercise


- Three test pits excavated on the proposed effluent application area indicate that the soils are 475 mm weakly structured clay loam, overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes)
- The site has a 5% gradient

Centre for Environmental Training

Water Balance Exercise

- Calculate the required evapotranspirationabsorption basal area using the worksheet provided following the PowerPoint slides
- The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 400 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 350 mm)
- Conventional beds may have between 300 mm and 600 mm of aggregate, ETA beds have 400 mm of aggregate and sand Centre for Environmental Training

	Units	Symbo	Source	Value										×	£Υ		
Design Wastewater Load	L/day	Q	Wastewater generation										User inpu	t		Calculate	divalue
Design Loading Rate (DLR) / Design Irrigation Rate (DIR)	mmiday	DLR / DIR	ASNZS 1547:2012 and SSE									Notes					
Void Space Ratio		v	1 (soil/ no storage), 0.3 (gravel media) 0.45 (sand media), 0.5 (arch) ¹									1. Patters	on (2006)				
Retained Rainfall Coefficient		R/C	0.7 (>30% slope), 0.8 (10-30% slope), 0.9 (0-10% slope), 1.0 (flat ground)														
Vominated EAA	m ²	EAA,	Nominated area by user														
		fonthly	Parameters		Jan	Feb	Mor	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Ann
Days in month	days	D	-		31	28	31	30	31	30	31	31	30	31	30	31	36
Precipiation	mm/month	P	Median monthly data (BoM or SILO)														
Daily evaporation	mmiday	E,	Mean daily data (BoM or SLO)														
Evaporation	mm/month	E	E _d ×D														
Crop Factor		Cf	0.4-0.9 ¹ varies with crop type and seas	50A)													
		Mode	el Inputs														
Retained rainfall	mm/month	Rr	P×RC														1
Applied Effluent	mm/month	w	(Q*D) + EAA _N														1
inputs	mm/month	÷ 1	(Rr + W)														1
		Model	Outputs														-
Evapotranspiration	mm/month	B	ExCl														1
Percolation	mm/month	8	DLR/DIR × D														
Dutputs	mm/month	0	(E1 + 8)														1
		Model	I Storage														
Monthly storage	mm/month	Su	(I - O) = V														
Cumulative storage	mm/month	Sc.	$S_M + (S_M \text{ for month prior})$														1
Area required for no storage	m²/month	EAA,	$(Q \times D) + (ET \cdot Rr + B)$														1
		Model	l Results														
Limiting storage	mm/month	SL.	Maximum monthly S e value														
EAA Required (no storage)	-2°	EAA	Maximum monthly EAA 3 value														

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption area basal area by the water balance method.

Using the following information and your Course Notes, calculate the minimum basal area of an evapotranspiration-absorption area for a three bedroom / five person dwelling with tank water supply.

Bureau of Meteorology rainfall and pan evaporation data for the nearest station and appropriate crop factor data is provided below.

Site name	e: RICHM	OND - UW	S HAWKE	SBURY	Site numb	ber: 06702	1					
Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Decile 5 (median) rainfall (mm)	74.3	75.8	66.5	50.4	30.9	38.6	27.6	24	32.8	43.2	66.2	55.6
Mean daily evaporat ion (mm)	5.9	4.9	4	3	2.1	1.7	1.9	2.7	3.8	4.6	5.2	5.7
Crop factor	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.8

Three test pits excavated on the proposed effluent application area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Calculate the evapotranspiration-absorption area using the worksheet provided on the following page.

The evapotranspiration-absorption area is to be constructed of imported aggregate and is to have a maximum depth of 400 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 350 mm).

Model Parameter	Units	Svmbol	Source	Value										KEY	 		
Design Wastewater Load	L/day	Ø	Wastewater generation									_	User input		0	Calculated value	value
Design Loading Rate (DLR) / Design Irrigation Rate (DIR)	mm/day	DLR / DIR	AS/NZS 1547:2012 and SSE								. –	Notes					
Void Space Ratio		>	1 (soil/ no storage), 0.3 (gravel media) 0.45 (sand media), 0.5 (arch) ¹									1. Patterson (2006)	n (2006)				
Retained Rainfall Coefficient		RrC															
Nominated EAA	m²	EAA _N	EAA _N Nominated area by user														
	2	Monthly	Monthly Parameters		Jan	Feb	Mar	Apr	May	June	уш	Aug	Sep	Oct	Νον	Dec	Annual
Days in month	days				31	28	31	30	31	30	31	31	30	31	30	31	365
Precipiation	mm/month	٩	Median monthly data (BoM or SILO)														
Daily evaporation	mm/day	ш	Mean daily data (BoM or SILO)														
Evaporation	mm/month	ш	$E_{d} \times D$														
Crop Factor		cf	0.4-0.9 ¹ (varies with crop type and season)	on)													
		Mode	Model Inputs						r	•							
Retained rainfall	mm/month	Ŗ	P x RrC														
Applied Effluent	mm/month	8	$(Q^*D) \div EAA_N$														
Inputs	mm/month	-	(Rr + W)														
		Model	Model Outputs														
Evapotranspiration	mm/month	ш	E x Cf														
Percolation	mm/month	В	DLR/DIR × D														
Outputs	mm/month	0	(Et + B)														
		Model	Model Storage														
Monthly storage	mm/month	SM	/ + (O - I)														
Cumulative storage	mm/month	s S	$S_M + (S_M \text{ for month prior})$														
Area required for no storage	m ² /month	EAAs	s (Q x D) ÷ (ET-Rr+B)	I													
		Model	Model Results														
Limiting storage	mm/month	ึ้ง	Maximum monthly S _c value														
EAA Required (no storage)	m^2	EAA	Maximum monthly EAA _S value														