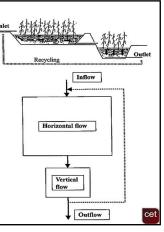
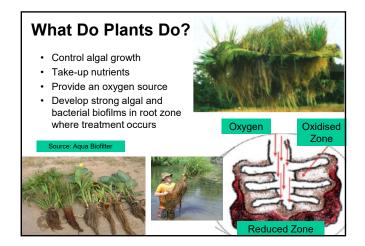

SSF Systems

- Preferable for <u>domestic</u> onsite treatment
- Used for treating combined domestic load or greywater (also for excess from "dry" composting systems)
- Installed after primary treatment devices and considered a secondary treatment system
- Grease and fat removal in septic tank pre-wetland
- CW may be integrated with site landscape plan



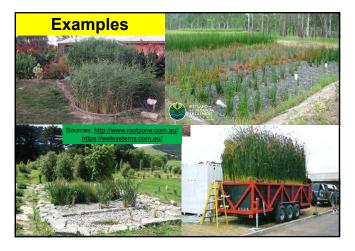


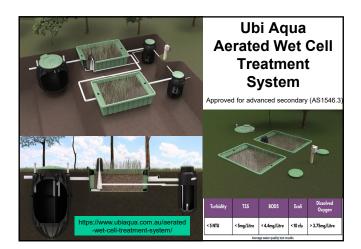
Hybrid CW System consisting of combined vertical and horizontal SSF systems

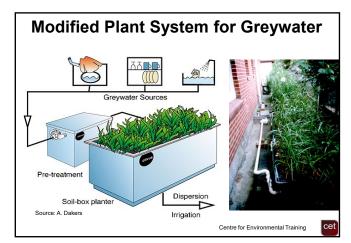
Designed to achieve N reduction. Nitrified effluent is returned to front end of system where denitrification can take place in less aerobic horizontal bed using inflow as a source of carbon needed for further treatment to occur.

What Do Plants Do?

- Transport gases to and from the root zone via **aerenchyma** which are airways running from the aerial parts of the plant to the roots
- Aerenchyma assist with gas diffusion
- Rhizomes provide sites for oxidation while adjacent soils remain anaerobic (biofilms grow on submersed stems and leaves)
- Bacteria colonise and perform a wide variety of chemical conversions




Role of Substrate


- · Provide rooting medium for wetland plants
- Support nutrients for plant growth
- · Provide capacity to store water in pore spaces
- Adsorb to limited degree contaminants and reduce effluent concentrations
- Buffers pH which assists in maintaining uniform bio/geochemical reactions

SSF Design Considerations

- Site selection/location
- Sizing for design hydraulic load and HRT (Treatment in CW is a function of HRT)
- Liner impermeable membrane or compacted clay or prefabricated unit

Centre for Environmental Training

Multiple beds – parallel or series?

Inlet structures to ensure uniform flow distribution Adjustable water level control

SSF Design Considerations

- Outlet/collection devices dosing sump and pump well capacity
- Gravel sizes
- · Macrophyte plant species to be used
 - Maintenance of reedbed including vegetation and weed management
- And after the CW system?

Sizing

- Sizing can be based on simple rule-of-thumb approaches for "typical" situations.
- Guidelines often suggest different specific area requirements per Population Equivalent (PE) to achieve a Secondary quality (20/30 standard) or a specific HRT
 - 2 m² up to 6 m² of wetland treatment area per PE/day for combined wastewater
 - HRT can be determined for a particular level of treatment but is typically recommended about 5-7 days

 For greywater design 3 m² PE/d 	Examples Area of	Combined Wastewater 24 m ²	Greywater Only 17 m ²	
0	Reed Bed			
		Centre for Enviro	cet	

Example of SSF Area and Dimensions							
BR/ PE	Hydraulic Load (L/d)	Surface area (m ²)	Suggested width (m)	Suggested length (m)	L:W ratio		
3/5	900	30-33	4.5	7.2	1.6		
Horizor	tal SSF Construct			Guideline for the U of Household Waste			
Horizor	ntal SSF Construct Hamilton, NZ	ed Wetlands in		of Household Waste			
Horizor	ntal SSF Construct Hamilton, NZ	ed Wetlands in of Thum Surface	On-site Treatment	of Household Waste	waters,		
Horizor	htal SSF Construct Hamilton, NZ Rule C	ed Wetlands in of Thum Surface All Was	On-site Treatment of b Sizing Area/p (m²)	of Household Waste (HRT 7 days) Surface Area/p (m	waters,		
Horizor	ntal SSF Construct Hamilton, NZ Rule C Water Depth (m)	ed Wetlands in of Thum Surface / All Was	On-site Treatment of b Sizing Area/p (m ²) stewater	of Household Waste (HRT 7 days) Surface Area/p (m Greywater	waters,		
Horizor	Hamilton, NZ Rule C Water Depth (m) 0.3	ed Wetlands in of Thum Surface / All Wat 6	On-site Treatment of b Sizing Area/p (m ²) stewater 5.5	of Household Waste (HRT 7 days) Surface Area/p (m Greywater 5	waters,		

Source: Table 1 in Lismore City Council (2005) The Use of Reed Beds for the Treatment of Sewage and Wastewater from Domestic Households

Gravel Media and Plants

- Depth of gravel bed media typically 40 cm with water level maintained about 5 cm below gravel surface
- Plant selection native wetland nursery species
- Low stature and high stature growth forms (plants/m²)
- Issue of plant senescence and on-going maintenance (including whether to harvest) plus managing invasive weeds

Zone	Gravel	Size Range (mm)	Porosity (%)	
Inlet & outlet zones	Coarse	40-60	45	
Main wetland	Fine, angular	10-20	40	cet

<section-header>Recommended SpeciesFloating plants:• Lemna spp, Wolffia spp.• Dubmergents:• Myriophyllum• Potamageton• Potagents:• Typha• Phragmites• Eleocharis• Schoenoplectus• Baumea

CW Performance

- Properly designed, installed and serviced SSF CW can provide secondary or advanced treatment of primary treated effluent
- Able to produce 20/30 standard TSS/BOD; median levels of FC can be reduced by approx. 99% (2 log reduction)
- · Rely on HRT to achieve level of treatment
- Reduction of N and P varies widely over time and is by biomass uptake and substrate adsorption
- Often variable for TP but initially high, later decreasing depending on substrate used; can be good for TN but dependent on oxidation and biochemical conversion of N
- Treated effluent should be discharged to an appropriate land application system

Centre for Environmental Training

Further Reading

- Lismore City Council (2005) The Use of Reed Beds for the Treatment of Sewage and Wastewater from Domestic Households, Lismore NSW
- Stephanakis, A. (2016) Constructed Wetlands: Description and Benefits of an Eco-Tech Water Treatment System, Chapter 12 in Impact of Water Pollution on Human Health and Environmental Sustainability, IGI Global
- <u>https://www.igi-global.com/chapter/constructed -wetlands/140180</u>
- Tanner, C. Headley, T. & Dakers, A. (2011) Guideline for the Use of Horizontal SSF Constructed Wetlands in On-site Treatment of Household Wastewaters, NIWA, Hamilton, NZ
- https://wetsystems.com.au/
- http://www.rootzone.com.au/
- <u>https://www.ubiaqua.com.au/aerated-wet-cell-treatment-system/</u>
 <u>Centre for Environmental Training</u>