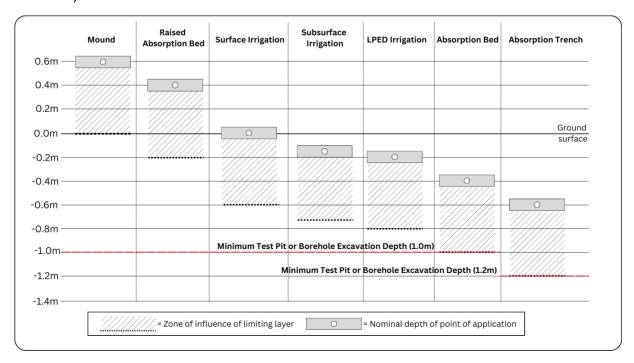

SITE ASSESSMENT AND DESIGN EXERCISE

Prior to commencing, it is important that we understand the relevance of the soil information gathered in the field, and how to interpret that information and successfully apply the methodology outlined in DLG, 1998 and AS/NZS 1547:2012 to determine:


- 1. The most-limiting horizon (or constraint) within the 'zone of influence' for the proposed effluent application system, and
- 2. The appropriate soil loading rate (SLR) for the observed characteristics of the limiting horizon.

To achieve this, we <u>must</u> understand two (2) important concepts.

Point of Application (POA) – The point at which treated effluent is applied to the soil. This is the level of the emitters in an irrigation system or the base of a bed or trench system.

Separation distance – The separation between the point of application and a limiting horizon. The separation distance between the point of application and the limiting horizon (or constraint) should be a minimum of 0.6 metre.

For this exercise we will work in small groups to complete a site assessment and design exercise for an on-site wastewater system.

Step One - Interpreting the Soil Log

(i) A 'typical' soil borehole log is provided below, along with a photograph of the excavated core. As seen, the core has been drilled to a depth of 1.2m and three (3) soil 'horizons' are identified.

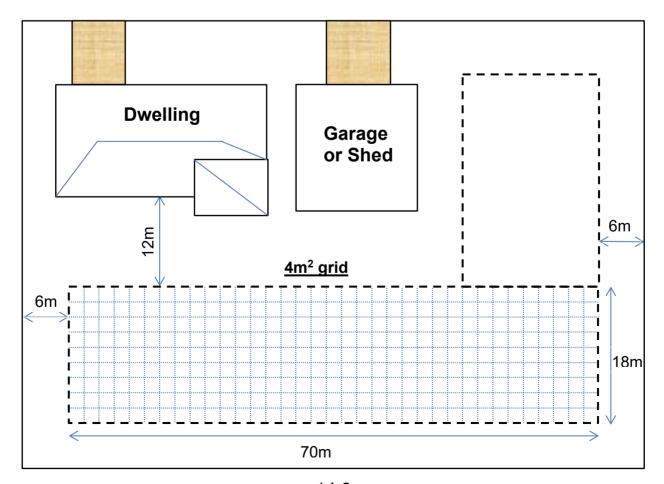
On the log, draw the <u>point of application</u> and show the minimum <u>separation distance</u> for the following effluent application systems: (a) absorption trench; (b) ETA bed; (c) Wisconsin sand mound and (d) irrigation system.

Note how different application systems intercept with the observed soil horizons and how selection of an appropriate 'limiting constraint' is guided by the POA.

SC	SOIL BORE LOG														
Client:	Client: Mr & Mrs Dirt		Test Pit	No:	BH2										
Site:		Som	ewhere (up the back	k		logged by:								
Date:		Yes	terday			Excavation	type:	Shovel, au	uger & crowbar						
Notes:		- IE	fer to site	plan for p	osition of t	est pit									
	PROFILE DESCRIPTION														
Depth (m)	Graphic Log	Horiz on	Texture	Structure	Colour	Mottles	Coarse Fragment s	Moisture Condition	Photo Log		tify the PO tion distan following L	ce for eac	h of the	Depth (m)	
										Trench	ETA/Bed	Sand Mound	Irrigation		
														0.6	
														0.5	
														0.4	
														1 1	
														0.3	
														0.2	
													-	0.1	
	100005								The state of the s						
0.1		A1	SL	Moderate	Dark brown	No	2 - 10%	SM						-0.1	
0.2							2-6mm		A and a					-0.2	
0.3		A2	SCL	Moderate	Dark grey ish brown	No	2 - 10%	SM						-0.3	
0.4					BOWN		2-6mm		12					-0.4	
0.5														-0.5	
								_							
0.6					-		2 - 10%	D	A STATE OF					-0.6	
0.7						Redard	6 Marie	_						-0.7	
0.8		В	ιc	Strong	Strong brown	Orange	6-20mm	D						-0.8	
0.9						(moderate)			-					-0.9	
									THE THINK						
1.0									TANK P					-1.0	
1.1									100					-1.1	
1.2						Minor gley			200					-1.2	
														\Box	
1.3			L											-1.3	

Step Two - Preliminary LAA Sizing

AS/NZS 1547:2012 supports a simple sizing methodology for effluent land application systems based on an 'areal loading' rate calculation.


$$A (m^2) = Q (L) / soil loading rate (DLR, DIR, BLR) (mm/day)$$

Assume that you are designing an OSSM system for a new dwelling to be constructed on the Site, with reticulated water supply, and a design hydraulic load of **600L/day**.

(ii) To examine the relative land area requirements for a range of LAA systems, use Table 5.2 from AS/NZS 1547:2012 (see following pages) to determine the applicable (soil) loading rate and minimum system area required for each of the following LAA types, based on the 'limiting' soil condition from the soil log provided in Step 1.

LAA System Type	Loading Rate (mm/day)	Minimum Size (m²)
Absorption Trench/bed		
ETA bed		
Mound		
Irrigation area		

(iii) On the example Site Plan (below), sketch out how each LAA configuration might be arranged for this example Site.

Step Three - Fieldwork

Use the **Soil Survey Sheet** and **Appendix 2** (following pages) to record details of your site and soil assessment.

Auger a hole and lay the soil out carefully to represent the soil profile. Excavate a soil pit adjacent to the auger hole and note how much more clear a picture you obtain of the soil profile by digging a soil pit.

Use the skills you have learned earlier to assess the soil texture by hand and feel for each horizon (layer) you can distinguish in the soil profile. Compile this information and the results of the other soils investigations listed on the table (Soil Survey Sheet).

(iv) What is the 'texture and structure' of the most-limiting soil horizon or constraint in the identified effluent land application area (LAA)?

Remember: Minimum vertical separation to limiting condition is 0.5m (AS/NZS 1547:2012)

(v) Would it be possible to mitigate the limiting condition identified? If so, how might you do that?

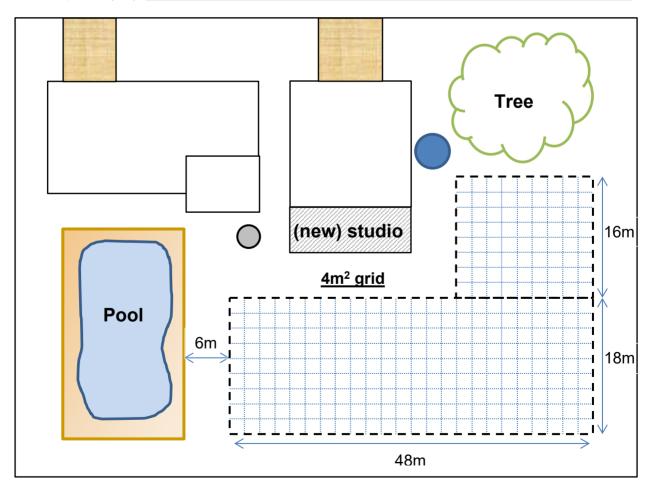
Step Four - Design Conditions

Assume that you are designing an OSSM system for a **three-bedroom** dwelling with detached **one-bedroom** studio on the Site you have just investigated. Reticulated (town) water supply and standard water fixtures will be provided.

- (vi) What is the 'design occupancy' for the buildings and on what basis have you made the determination?
- (vii) If the dwelling is to be occupied by <u>five people</u>, and the studio can potentially be occupied by <u>two people</u>, what is the 'design hydraulic load' using AS/NZS 1547:2012?

TABLE H1
TYPICAL DOMESTIC WASTEWATER DESIGN FLOW ALLOWANCES – AUSTRALIA

Source	Typical wastewater design flows (L/person/day)					
Desidential manies	On-site roof water tank supply	Reticulated water supply				
Residential premises	120	150				
Source: Australian Bureau of Statistics. Water Account 2004/2005. Chapter 7 Figure 7.3						


Step Five - Final Design Solution

(viii) Discuss amongst your group and decide upon the 'most suitable' OSSM system for the Site layout (below) and the soil conditions you have assessed today.

Treatment System: (Primary / Secondary), Why?
LAA System type:
Applicable Soil Loading Rate: (mm/day)
Mitigation proposed: (What/Why?)

(ix) Prepare a case to justify your system selection and determine the appropriate sizing and arrangement for your system on the following development site.

LAA required (m²):

Each group will have an opportunity to present their design and will be expected to explain / rationalise how they have reached their conclusions.

SOIL CATEGORIES AND RECOMMENDED DESIGN IRRIGATION/LOADING RATES (DIR/DLR) FOR LAND-APPLICATION SYSTEMS TABLE 5.2

		Morrish	(basal area)	(Table N1)	32	5	47	24	16	16	8	(see Note to Table N1)	80			(see Note to Table N1)		
(AE		CHO	irrigation	(Table M1)	(see Note 3 of Table M1)	7	4	C	0.0		ю.		u C	2.5 (see Note 4 of Table M1)		(see Note 3 of Table M1)		
3/DLR) (mm/da		Drip and	spray	(Table M1)	5	(see Note 2		4 (see Note 1 of Table M1) 3.5 (see Note 1 of Table M1)			c	(see Note 1	OI IADIE MII)	C	(see Note 2	of lable MI)		
ading rate (DIF		ETA/ETS	beds and	(Table L1)			(see Note 4 of Table L1)			12	8	5	8		5	(see Notes 2, 3, and 5	of Table L1)	
Design irrigation/loading rate (DIR/DLR) (mm/dav)	Table 1 1)	lable Lij	Secondary	treated	LR values)		90	50	30	30	20	10	12	10	8		ble L1)	
Desig	Trenches and beds (see Table L1) nary treated effluent treat treated effluent treated effect treated effect treated effluent treated effect treated effet treated effect treated effect treated effect treated effect treated effet treated	Maximum rate	of Table L1 for D	(see Note 1 of Table L1 for DLR values)		25	15	15	10	5	æ	5		,	(see Notes 2 and 3 of Table L1)			
	Tronchos		Primary treated effluent	Conservative	(see Note 1		15	15	10	10	9	4	5				у өөз)	
		Indicative	(K _{sat}) (m/d)		> 3.0	> 3.0	1.4 – 3.0	1.5 – 3.0	0.5 – 1.5	0.5 – 1.5	0.12 - 0.5	0.06 - 0.12	0.12 - 0.5	0.06 - 0.12	< 0.06	0.06 - 0.5	> 0.06	> 0.06
	Structure		Structureless (massive)	Weakly structured	massive	High/ moderate structured	Weakly structured or massive	High/ moderate structured	Weakly structured	Massive	Strongly structured	Moderately structured	Weakly structured or massive	Strongly structured	Moderately structured	Weakly structured or massive		
	Soil			Gravels and sands	Sandy	loams		Loams		Clay loams			Light clays			Medium to heavy clays		
	Soil		-	c	N	c	2		4			S			9			

COPYRIGHT © Standards Australia and Standards New Zealand

TABLE L1 RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Design loading rate (DLR) (mm/d)						
Soil	Soil		Indicative	Tre						
category	texture	Structure	permeability (K _{sat})(m/d)	Primary treat	ted effluent	Secondary	ETA/ETS beds and trenches			
			v Salven si	Conservative rate	Maximum rate	treated effluent				
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)				
2	Sandy loams	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)				
	- Ioumo	Massive	1.4 – 3.0	15	25	50	(see			
3	Loams	High/ moderate structured	1.5 – 3.0	15	25	50	Note 4)			
3	Loans	Weakly structured or massive	0.5 – 1.5	10	15	30				
		High/ moderate structured	0.5 – 1.5	10	15	30	12			
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8			
		Massive	0.06 - 0.12	4	5	10	5			
		Strongly structured	0.12 - 0.5	5	8	12	8			
5	Light clays	Moderately structured	0.06 0.12		5	10				
		Weakly structured or massive	< 0.06			8	_			
		Strongly structured	0.06 - 0.5				5 (see Notes 2, 3, & 5)			
6	Medium to heavy clays	Moderately structured	< 0.06	(s	(see Notes 2 & 3)		2, 0, 00)			
		Weakly structured or massive	< 0.06							

NOTES:

- The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.
- 3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).
- 4 ETA/ETS systems are not normally used on soil Categories 1 to 3.
- 5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE M1
RECOMMENDED DESIGN IRRIGATION RATE (DIR) FOR IRRIGATION SYSTEMS

_				Design irrigation rate (DIR) (mm/day)				
Soil Category (see Note 1)	Soil texture	Structure	Indicative permeability (K _{sat}) (m/d)	Drip irrigation	Spray irrigation	LPED irrigation		
1	Gravels and sands	Structureless (massive)	> 3.0	5	(see Note			
2	Sandy	Weakly structured	> 3.0	(see Note 2)	5	4		
2	loams	massive	1.4 – 3.0			7		
3	Loomo	High/ moderate structured	1.5 – 3.0	4	4	3.5		
3	Loams	Weakly structured or massive	0.5 – 1.5	(see Note 1)	4	3.3		
_	0	High/ moderate structured	0.5 – 1.5	3.5	0.5	9		
4	Clay loams	Weakly structured	0.12 - 0.5	(see Note 1)	3.5	3		
		Massive	0.06 0.12					
		Strongly structured	0.12 – 0.5			2.5 (see Note 4)		
5	Light clays	Moderately structured	0.06 - 0.12	3 (see Note 1)	3			
		Weakly structured or massive	< 0.06					
	h d a ella con	Strongly structured	0.06 - 0.5					
6	Medium to heavy clays	Moderately structured	< 0.06	2 (see Note 2)	2	(see Note 3)		
	Clays	Weakly structured or massive	< 0.06					

NOTES:

- For Category 3 to 5 soils (loams to light clays), the drip irrigation system needs to be installed in an adequate depth of topsoil (in the order of 150 250 mm of *in situ* or imported good quality topsoil) to slow the soakage and assist with nutrient reduction.
- 2 For Category 1, 2, and 6 soils, the drip irrigation system has a depth of 100 150 mm in good quality topsoil (see CM1 and M3.1).
- 3 LPED irrigation is not advised for Category 1 or Category 6 soils drip irrigation of secondary effluent is the preferred irrigation method.
- 4 LPED irrigation for Category 5 soils needs a minimum depth of 250 mm of good quality topsoil (see M5 and CM7.1).

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE N1
RECOMMENDED MOUND DESIGN LOADING RATES

Soil Category	Soil texture	Structure	Indicative permeability (K _{sat})(m/d)	Design loading rate (DLR) (mm/d)
1	Gravels and sands	Structureless (massive)	> 3.0	32
	0	Weakly structured	> 3.0	24
2	Sandy loams	Massive	1.4 – 3.0	24
3		High/moderate structured	1.5 – 3.0	24
ა	Loams	Weakly structured or massive	0.5 – 1.5	16
		High/ moderate structured	0.5 – 1.5	16
4	Clay loams	Weakly structured	0.12 – 0.5	8
		Massive	0.06 - 0.12	5 (see Note)
		Strongly structured	0.12 – 0.5	8
5	Light clays	Moderately structured	0.06 - 0.12	
		Weakly structured or massive	< 0.06	
		Strongly structured	0.06 – 0.5	5 (see Note)
6	Medium to heavy	Moderately structured	< 0.06	
	clays	Weakly structured or massive	< 0.06	

NOTE: To enable use of such soils for on-site wastewater land application, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

(Source: AS/NZS 1547:2012 Standards Australia)

SOIL SURVEY SHEET

Site:	Date:
Landscape (scription)
Geology	Surface drainage
Slope (%)	Internal drainage
Aspect	Groundwater
Vegetation	

Buffer distances/setbacks (metres, upslope/downslope)

Sketch plan	Surface water storage	Groundwater bore or well
	Other buildings	Swimming pool
	Property boundary upslope	Property boundary downslope

Profile description

Soil	Depth	Boundary type	Field texture	Structure	Hd	EC (dSm ⁻¹)	Colour	Mottles	Dispersion	Course fragments
Тор										
Second										
Third										

ppendix 2

APPENDIX 2

MODEL SITE REPORT

1 SITE EVALUATORS	
Company	Name(s)
Address	
ph:	fax:
Date of assessment: / / Sig	gnature of evaluator: / /

2 SITE INFORMATION	
Address/locality of site	Council area
Owner/developer:	ph:
Address:	
Size/shape/layout Site plans attached Photograph attached	yes/no
Intended water supply	rainwater reticulated water supply bore/groundwater
Expected wastewater quantity (litres/day)	
Local experience (information attached regarding on-site sewage management systems installed in the locality)	yes/no

If any site or soil features have not been assessed, note why.

3	SITE ASSESSMENT	
Clima	ite	
	Are low temperatures expected (particularly below 15°C)?	yes/no
Wher	e appropriate:	
	Rainfall water balance attached	yes/no
	Land application area calculation attached	yes/no
	Wet weather storage area calculation attached	yes/no
Flood	potential	
	Land application area above 1 in 20 year flood level	yes/no
	Land application area above 1 in 100 year flood level	yes/no
F	Electrical components above 1 in 100 year flood level	yes/no
Expos	ure	
Slope		
Landf	orm	
Run-c	on and seepage	
Erosic	on potential	
	·	
Site d	rainage	
Fill		
Grour	ndwater	
	Horizontal distance to groundwater well used for domestic	
	Relevant groundwater vulnerability map referred to?	yes/no/not available
	Level of protection (I – VI)	
	Bores in the area and their purpose:	
Ruffer	distances from wastewater	
IVIAIIA	gement system to: Permanent waters (m)	
	Other waters (m)	
	Other sensitive environments (m)	
	Boundary of premises (m)	
	Swimming pools (m)	
	Buildings (m)	
Is the	re sufficient land area available for:	
	Application system (including buffer distances)	yes/no
	Reserve application system (including buffer distances)	yes/no
Surfac	ce rocks	

SOIL ASSESSMENT

Depth to bedrock or hardpan (m)

5	SYSTEM SELECTION	
Consi	deration of connection to a centralised sewerage system Approximate distance to nearest feasible connection point: Potential for future connection to centralised sewerage Potential for future connection to reticulated water	high/med/low high/med low/already connected
Туре	of land application system considered best suited to site:	
Why?		
Туре	of treatment system considered best suited to site and applic	ation system:
Why?		
6.	GENERAL COMMENTS	
Are th	nere any specific environmental constraints?	
Are th	nere any specific health constraints?	
Ληνια	other comments?	
ALLY C	ATION COMMITTERIA:	

Calculation of evapotranspiration-absorption area size by water balance method

Size of area for each month

 m^2 (9) Size of area (8)/(7) m^2 First trial area = average monthly area = Effluent applied per month (3)-(5)+(6) Disposal rate mm month (6) DLR per mm $R_r = 0.75R$ (5) Retained rainfall Rainfall mm (4) 2 transpiration ET = 0.75E Evapo mm evaporation (2) Pan mm Ш Month Feb Mar Apr May Jun Aug Sep Nov Dec Jan Oct Jul

int (first trial)	(4) (5) (6)	Disposal (3) - (4) Increase Depth of Increase rate in depth effluent in depth of stored for month of	month effluent $(X-1)$ effluent mo (7) $(5)/n$ + (6)	mm mm mm	0												
ent (first trial)		Application Disprate rate (8)/(2)		m													
Depth of stored effluent (first trial)	(1) (2)	Month First trial area	m ²		Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	

n = effective void space factor. For imported durable aggregate, n = 0.3