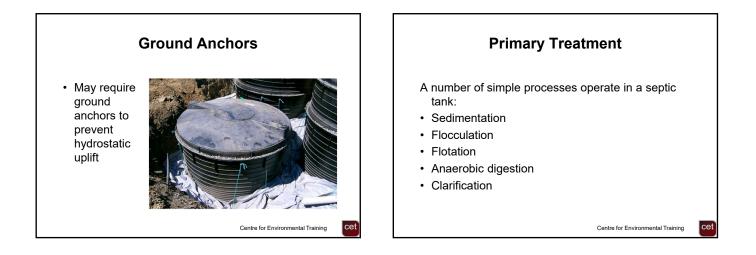
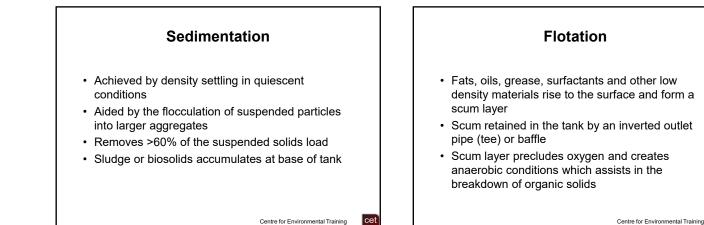
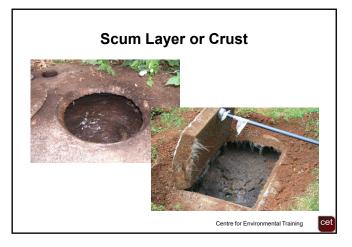
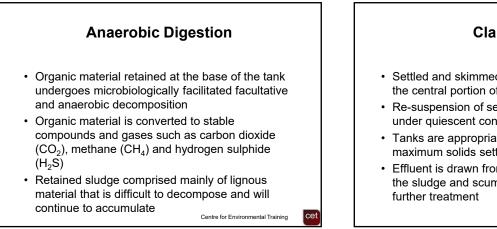


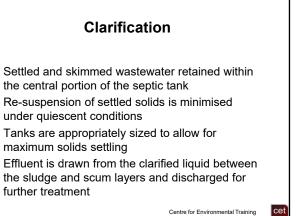
Baffles

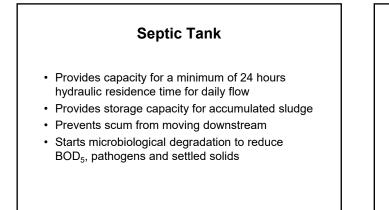

 May include a partition or baffle divider to assist with hydraulic buffering and reduce carry-over of solids

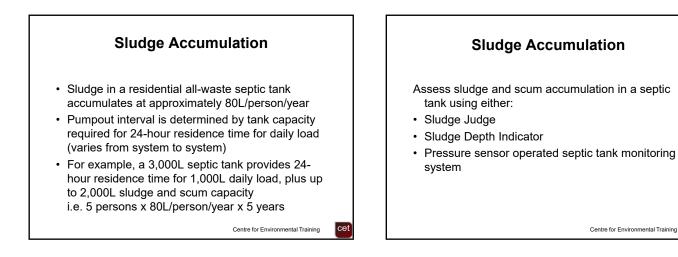











Septic Tank Capacity

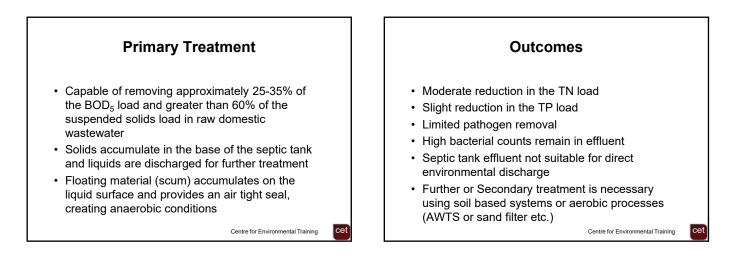
All-waste septic tank capacities (AS/NZS1547:2012)

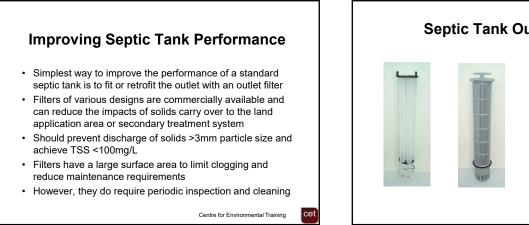
Persons	Bedrooms	Average daily flow (L)	Tank capacity
1 - 5	1-3	Up to 1,000L	3,000L
6 - 7	4	1,000 - 1,400L	3,500L
8	5	1,400 - 1,600L	4,000L
9 - 10	6	1,600 - 2,000L	4,500L

Centre for Environmental Training

Centre for Environmental Training

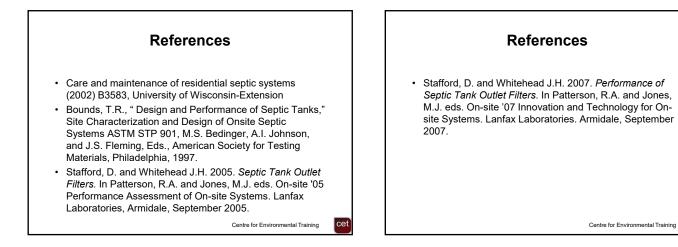
Centre for Environmental Training





Septic Tank Effluent Quality

Parameter	Untreated domestic wastewater	Primary treated effluent	
BOD ₅	200 - 300 mg/L	~ 150 mg/L	
Suspended Solids	200 - 300 mg/L	~ 50 mg/L	
Total Nitrogen	20 - 100 mg/L	50 - 60 mg/L	
Total Phosphorus	10 - 25 mg/L	10 - 15 mg/L	
Faecal Coliforms	10 ³ - 10 ¹⁰ cfu/100mL	10⁵ - 10 ⁷ cfu/100mL	



Outlet Filter Performance

Parameter	Typical ST effluent	Without effluent filter	With effluent filter	% Improvement
BOD₅	450	180	130	28%
TSS	503	80	50	38%
NH ₃ -N	41	40	40	0%
Org. N-N	29	28	28	0%
TKN-N	70	68	68	0%
Org. P-P	6.5	6	6	0%
Inorg. P-P	11	10	10	0%
TP	17	16	16	0%
Oil and grease	164	25	15	40%
ource: Crites & Tchobanoglou	us 1998		Centre for Envir	onmental Training

Septic Tank Calculations

Question 1.

A new three bedroom house is supplied with reticulated water and has a 3,000L septic tank installed on construction. Assume that five people occupy the house.

- (i) Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
- (ii) Calculate the detention time of effluent in the septic tank at the outset.

(iii) If sludge accumulates at the rate of 80L/person/year, calculate the amount of sludge that will accumulate in one year.

Question 2.

An older three bedroom house is supplied with reticulated water and is occupied by three people. On inspection, it is determined that the septic tank is of 2,300L capacity, but the tank is half full of sludge.

- (i) Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
- (ii) Calculate the annual sludge accumulation based on a sludge accumulation rate of 80L/person/year.
- (iii) A minimum of 24 hours detention must be maintained in the tank at all times. Calculate the length of time remaining before a pumpout will be required.

Septic Tank Calculations

ANSWERS

Question 1.

- (i) Daily hydraulic load = 5 x 150L/person/day = 750L/day
- Septic tank volume = 3,000L
 Daily hydraulic load = 750L/day
 Detention time = 3,000L / 750L/day = 4 days
- (iii) Occupancy = 5 persons
 Sludge accumulation rate = 80L/person/year
 Annual sludge accumulation = 5 persons x 80L/person/year = 400L/year

Question 2.

- (i) Daily hydraulic load = 3 x 150L/person/day = 450L/day
- (ii) Occupancy = 3 persons
 Sludge accumulation rate = 80L/person/year
 Annual sludge accumulation rate = 3 persons x 80L/person/year = 240L/year
- (iii) Tank capacity = 2,300L
 Daily hydraulic load = 450L
 Volume of sludge in tank = 2,300L / 2 = 1,150L
 Volume available for further sludge accumulation = 1,150L 450L = 700L
 Sludge accumulation rate = 240L / year
 Maximum time remaining prior to pumpout 700L / 240L/year = 2.9 years