

als. Read Safety Data Sheets and use PPE.

ection Equipment Checklist

s should be taken v

Inspection Equipment and Use

- Each item has a particular role
 - WHS PPE
 - Access
 - Testing and monitoring
 - Tracing
 - Records

 Inspection
 Access

 Equipment
 • Basic tools – screwdrivers, sockets, multi-grips, shifters, hammer etc.

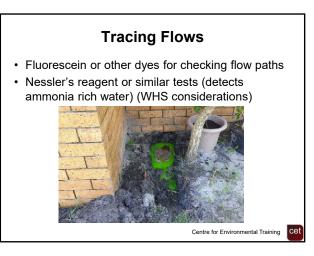
 Example
 • Battery drill or impact driver

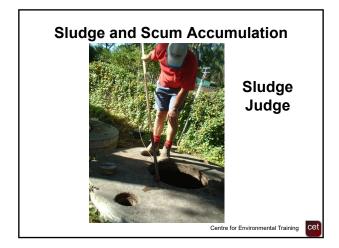
(See Section 3.1)

Centre for Environmental Training

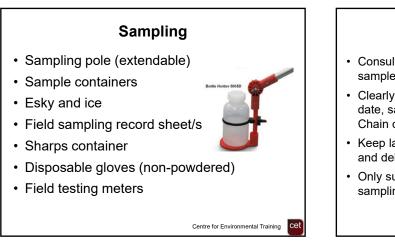
cet

• Crowbar, wrecking bar, hook, lid lifter, shovel





cet


Centre for Environmental Training

Sampling

- Consult individual laboratories for advice on sample bottles (type, number, volume of sample)
- Clearly label each sample bottle (location, time, date, sampled by) and complete the laboratory Chain of Custody form
- Keep laboratory samples at ~4°C (i.e. esky on ice) and deliver / analyse as soon as possible
- Only suitably trained staff should undertake field sampling following sampling protocols

Centre for Environmental Training Cet

Testing and Monitoring for Compliance and Enforcement

- Where an on-site system is suspected of causing harm to human health or the environment, rigorous testing and monitoring of wastewater or environmental parameters may be necessary
- Monitoring will focus on the parameters required to provide evidence for compliance and enforcement actions (evidence of non-compliance, extent or confirmation of pollution, clean up requirements)

Centre for Environmental Training Cet

Testing and Monitoring for Compliance and Enforcement

- Simple indicators may be sufficient to get compliance (tracing flows using visual indicators, faecal contamination testing, ammonia detection)
- Where further investigation is required, use of the Australian & New Zealand *Guidelines for Fresh & Marine Water Quality* website is recommended <u>https://www.waterquality.gov.au/anz-guidelines</u>
- Where a local jurisdiction has their own guidelines for water sampling, these should be followed

Centre for Environmental Training

Testing and Monitoring for Compliance and Enforcement

- Testing and monitoring can provide evidence of conformance with conditions of consent, i.e. final effluent quality or quantity
- Environmental parameters will depend on the receiving environment and may require additional sampling from 'background' locations too
- A sampling program should be developed prior to sampling being undertaken, to gather comprehensive and effective data

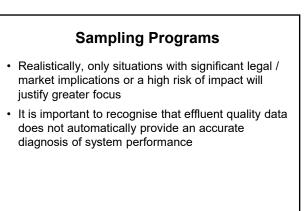
Centre for Environmental Training Cet

Testing and Monitoring for Compliance and Enforcement

- Possible indicators for wastewater or effluent contamination are:
 - Physical contaminants in direct discharge (pieces of food, sanitary wastes)
 - Tracing flows with visual indicators (dye)
 - Presence of ammonia rich water
 - Tracing flows with chemical markers
 - Faecal coliforms (FC) (E. coli)
 - Viral indicators (e.g. human mastadenoviruses)

Centre for Environmental Training Cel

Monitoring On-site Systems


- Monitoring is essential when the performance of a system must be accurately quantified (problem identification or verification of the performance of a new / emerging technology)
- Rigorous monitoring of wastewater quality and quantity requires a significant amount of time and resources
- Programs to measure the specific treatment efficiency of a particular component must include monitoring of both influent and effluent

Centre for Environmental Training Cet

Sampling Programs

- Careful consideration is required when selecting sampling location, time, frequency and parameters for analysis
- Domestic wastewater is subject to significant temporal variation. Grab samples are only a snapshot of performance
- Grab samples can be useful when conducting compliance testing of multiple systems
- Composite sampling can allow assessment of average wastewater quality over a period

Centre for Environmental Training

Monitoring Parameters

Hydraulic Load

- Hydraulic load should be measured at the same frequency as bio-chemical data
- Data loggers are preferred, water meter readings may be adequate (excluding external water use)

Household Behaviour

- Note the timing of wastewater generating activities (e.g. laundry, showers)
- · Identify chemical inputs (products)

Centre for Environmental Training

Monitoring Parameters

Faecal Coliforms (FC)

- FC bacteria, commonly Escherichia coli (E. coli), are used as an indicator of faecal contamination, likelihood of other pathogens and indicator of disinfection effectiveness
- FC are not a definitive proof of sewage in the environment, as they are also present in animal faeces
- FC concentrations will vary with the level of treatment

Centre for Environmental Training

Monitoring Parameters


pН

- System pH should be kept between 6.0 and 9.0.
 Wide / frequent fluctuation of pH is detrimental to processes (reduced solids settleability / microbiological activity)
- · Environmental pH depends on local environment

Electrical Conductivity

Conductivity increases as the proportion of ions in solution increase

Centre for Environmental Training Ce

Monitoring Parameters

Biochemical Oxygen Demand (BOD₅)

- BOD₅ is an indication of organic matter in water
- + High BOD_5 is indicator of poor aerobic treatment

Total Suspended Solids (TSS)

- · Includes suspended organic and inorganic material
- High TSS loads can have a detrimental effect on downstream processes (e.g. disinfection) and cause blockages in land application areas

Centre for Environmental Training Cel

Monitoring Parameters

<u>Turbidity</u>

- Is an indication of system performance that can be measured in the field
- Useful to assess if disinfection will be effective:
 For effective disinfection by UV, turbidity should be <1 NTU
 - For effective disinfection by chlorine, turbidity should be <5 NTU, but preferably <1 NTU.

Monitoring Parameters

Phosphorus (P)

- Typically found in one of three forms in domestic wastewater: orthophosphate (e.g. PO₄³⁻, HPO₄²⁻); polyphosphate (e.g. P₂O₇⁴⁻) and organic phosphate
- Orthophosphates are readily available for biological metabolism, while poly and organic phosphates must first undergo some form of conversion

Centre for Environmental Training

Monitoring Parameters

Nitrogen (N)

- N is found in three forms organic, ammoniacal and oxidised
- Total Kjeldahl Nitrogen (TKN) is the concentration of organic N and ammoniacal N. These forms of N are dominant in anaerobic effluent
- TKN should be <20mg/L in any clarification chamber (continuous or intermittent operation)
- If TKN is >20mg/L the aeration period is not sufficient to create conditions for nitrification / denitrification

Centre for Environmental Training

Monitoring Parameters

Nitrogen

- Total Oxidised Nitrogen (TON) is the concentration of nitrate (NO₃) and nitrite (NO₂)
- Need to look at specific forms of N when monitoring a system to gain an understanding of treatment efficiency

Centre for Environmental Training Cei

Monitoring Parameters

Dissolved Oxygen (DO)

- DO can be used to assess the efficiency of most secondary treatment processes
- Secondary treated effluent should generally have a high DO (>2mg/L), but >4mg/L can be too high
- But... be careful, DO can fluctuate significantly within very short periods
- DO will not be consistently maintained in an intermittently operated AWTS and STS – measure TKN if air is off

Centre for Environmental Training Cet

Centre for Environmental Training

Monitoring Parameters

Other Parameters

- Total Oil and Grease (TOG)
- Surfactants (MBAS methylene blue active substances)
- Chemical Oxygen Demand (COD)
- · Free Residual Chlorine (FRC)
- Volatile Suspended Solids (VSS)

Interpretation of Results

- It is not always advisable to assess the results of monitoring against regulatory standards in isolation
 - Consider the resolution of the data (i.e. the suitability of sampling frequency and duration)
 - Consider temporal variation (e.g. hydraulic load / peak pollutant periods)
 - Consider potential external impacts on readings (sampling errors, rainfall, higher than average pollutant inputs)

Centre for Environmental Training Cet

Typical Treatment Performance

Parameter	Septic Tank	Secondary ¹	Advanced Secondary ²
BOD ₅ (mg/L)	140-200 (180)	5-50 (20)	5-15 (10)
TSS (mg/L)	30-100 (80)	5-50 (30)	5-15 (10)
Faecal Coliforms (cfu/100ml) ³	10 ⁶ -10 ⁸	10 ³ -10 ⁴	10 ¹ -10 ³
TN	40-100 (60)	15-50 (30)	10-50 (20)
TP	5-15 (10)	5-10 (8)	5-10 (8)

Source: USEPA Onsite Wastewater Treatment Systems Manual 2002.

Note 1: Traditional package plants and reed beds with no disinfection.

Note 2: Sand filters, some biofilters and textile filters.

Note 3: Secondary or advanced secondary effluent can achieve faecal coliform concentrations <100cfu/100ml with active disinfection.

Centre for Environmental Training Cet

TABLE 2.2 EFFLUENT COMPLIANCE CRITERIA FOR AN STS WITH NUTRIENT REDUCTION FACILITIES					
Parameter	Secondary effluent with reduced nutrients		Advanced secondary offluent with reduced nutrients		
	90% of samples	Maximum	90% of samples	Maximum	
BODs	≤20 mg/L	30 mg/L	≤10 mg/L	20 mg/L	
TSS	≤30 mg/L	45 mg/L	≤10 mg/L	20 mg/L	
E. coli*	≤10 cfu/100 mL	30 cfu/100 mL	≤10 cfu/100 mL	30 cfu/100 mL	
FAC	Minimum 0.5 mg/L†	N/A	Minimum 0.5 mg/L†	N/A	
Turbidity	N/A	N/A	N/A	5 NTU	
Total N‡	N/A	15 mg/L	N/A	15 mg/L	
Total P‡	N/A	2 mg/L	N/A	2 mg/L	
† Minimum l	nfection is required. evel, not 90% of sample nt with NZ OSET NTP *.		duction capabilities.		