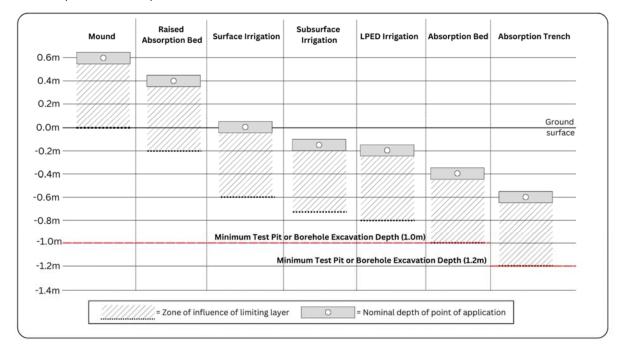

SITE ASSESSMENT AND DESIGN EXERCISE

Prior to commencing, it is important that we understand the relevance of the soil information gathered in the field, and how to interpret that information and successfully apply the methodology outlined in EPA 891.4 (VIC CoP, 2016) to determine:


- 1. The most-limiting horizon (or constraint) within the 'zone of influence' for the chosen effluent application system, and
- 2. The appropriate soil loading rate (SLR) for the observed characteristics of the limiting horizon.

To achieve this, we must understand two (2) important concepts.

Point of Application (POA) – The point at which treated effluent is applied to the soil. This is the level of the emitters in an irrigation system or the base of a bed or trench system.

Separation distance – The 'vertical' separation between the point of application and a limiting horizon. The separation distance between the point of application and the limiting horizon (or constraint) should be a minimum of 0.6 metre.

For this exercise we will work in small groups to complete a site assessment and design exercise for an on-site wastewater system.

Step One – Interpreting the Soil Log

Γ

(i) A 'typical' soil borehole log is provided below, along with a photograph of the excavated core. As seen, the core has been drilled to a depth of 1.2m and three (3) soil 'horizons' are identified.

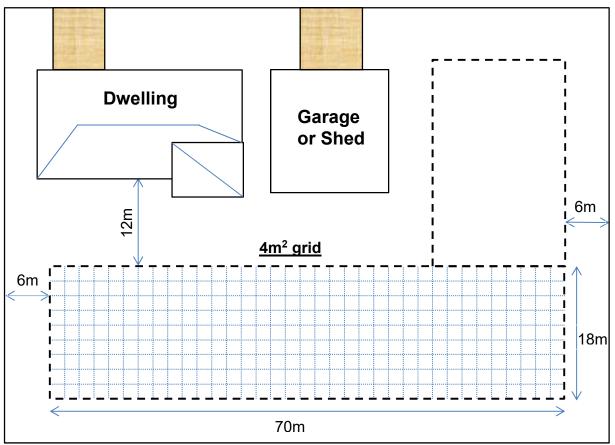
On the log, draw the <u>point of application</u> and show the minimum <u>separation distance</u> for the following effluent application systems: (a) absorption trench; (b) ETA bed; (c) Wisconsin sand mound and (d) irrigation system.

Note how different application systems intercept with the observed soil horizons and how selection of an appropriate 'limiting constraint' is guided by the POA.

Client:		Mr 8	Mrs Dir	t		Test Pit	No:	BH2							
Site:		Som	ewhere u	up the back	ĸ	Excavated	logged by:								
Date:		Yest	terday			Excavation	type:	Shovel, au	ger & crowbar						
Notes:		- rei	er to site	e plan for p	osition of t	est pit									
						PR	OFILE D	ESCRIP	TION						
Depth (m)	Graphic Log	Horizon	Texture	Structure	Colour	Mottles	Coarse Fragment s	Moisture Condition	Photo Log		tify the PO tion distan following L	ce for eac	h of the	Depth (m)	
										Trench	ETA/Bed	Sand Mound	Irrigation		
														0.6	
														0.5	
														0.4	
														0.3	
														0.2	
														0.1	
0.1		A1	SL	Moderate	Dark brown	No	2 - 10%	SM	SAL 1					-0.1	
							2-6mm		YAR CAR						
0.2									and the second					-0.2	
0.3		A2	SCL	Moderate	Dark greyish	No	2 - 10%	SM	CALL TO				-	-0.3	
0.4					brown		2-6mm		13.5 (1)					-0.4	
0.5									1.44					-0.5	
0.6							2 - 10%	D	2.01.15					-0.6	
							2 - 1076	U	Stat 1						
0.7		в	LC	Strong	0	Red and	6-20mm	D	E BAS					-0.7	
0.8		1000	1.100		Strong brown	Orange (moderate)	100001000000000000000000000000000000000		· Basel					-0.8	
0.9						(moderate)			Sec.					-0.9	
1.0									A LA					-1.0	
1.1									1. 20					-1.1	
						Minor gley			. C. C. C.						
1.2														-1.2	
1.3														-1.3	

Step Two – Preliminary LAA Sizing

AS/NZS 1547:2012 supports a simple sizing methodology for effluent land application systems based on an '**areal loading'** rate calculation.


A (m²) = **Q** (L) / soil loading rate (DLR, DIR, BLR) (mm/day)

Assume that you are designing an OSSM system for a new dwelling to be constructed on the Site, with reticulated water supply, and a design hydraulic load of **600L/day**.

(ii) To examine the relative land area requirements for a range of LAA systems, use Table 9 from EPA 891.4 (see following pages) to determine the applicable (soil) loading rate and minimum system area required for each of the following LAA types, based on the 'limiting' soil condition from the soil log provided in Step 1.

LAA System Type	Loading Rate (mm/day)	Minimum Size (m²)
Absorption Trench/bed		
ETA bed		
Mound		
Irrigation area		

(iii) On the example Site Plan (below), sketch out how each LAA configuration might be arranged for this example Site.

Step Three - Fieldwork

Use the **Soil Survey Sheet** and **Appendix 2** (following pages) to record details of **your** site and soil assessment.

Auger a hole and lay the soil out carefully to represent the observed soil profile. Excavate a soil pit adjacent to the auger hole and note how much additional detail in the soil profile can be obtained by digging a soil pit.

Use the skills you have learned earlier to assess the soil texture by hand and feel for each horizon (layer) you can distinguish in the soil profile. Compile this information and the results of the other soils investigations listed on the table (Soil Survey Sheet).

(iv) What is the '**texture and structure**' of the most-limiting soil horizon or constraint in the identified effluent land application area (LAA)?

Remember: Minimum vertical separation to limiting condition is 0.5m (AS/NZS 1547:2012)

(v) Would it be possible to mitigate the limiting condition identified? If so, how might you do that?

Step Four – Design Conditions

Assume that you are designing an OSSM system for a **three-bedroom** dwelling with detached **one-bedroom** studio on the Site you have just investigated. Reticulated (town) water supply and standard water fixtures will be provided.

- (vi) What is the '**design occupancy**' for the buildings and on what basis have you made this determination?
- (vii) If the dwelling is to be <u>occupied by **four** people</u>, and the studio can potentially be occupied by **two** people, what is the **'design hydraulic load'**?

Source		Typical wastewater design flows (L/person/day)				
	On-site roof water tank supply Reticulated water supp					
Residential premises	120	150				

Source	Design hydraulic flow rates for all water supplies ^{2, 4, 5} (L/person.day)	Organic material loading design rates (g BOD/person.day) ⁷
Households with extra wastewater producing facilities ⁶	220	60
Households with standard water fixtures	180	60
Households with full water-reduction fixtures ³	150	60
Motels/hotels/guesthouse		
- per bar attendant	1000	120
- bar meals per diner	10	10
 per resident guest and staff with in-house laundry 	150	80
 per resident guest and staff with out-sourced laundry 	100	80
Restaurants (per potential diner) 9		
- premises <50 seats	40	50
- premises >50 seats	30	40
 tearooms, cafés per seat 	10	10
 conference facilities per seat 	25	30
- function centre per seat	30	35
 take-away food shop per customer 	10	40
Public areas (with toilet, but no showers and no café) ⁸		
- public toilets	6	3
- theatres, art galleries, museum	3	2
 meeting halls with kitchenette 	10	5
Premises with showers and toilets	50	10
 golf clubs, gyms, pools etc. (per person) 	50	10
Hospitals - per bed	350	150
Shops/shopping centres		
- per employee	15	10
- public access	5	3
School - child care	20	20
- per day pupil and staff	20	20
- resident staff and boarders	150	80
Factories, offices, day training centres, medical centres	20	15
Camping grounds		
- fully serviced	150	60
 recreation areas with showers and toilets 	100	40

Table 4: Minimum daily wastewater flow rates and organic loading rates ^{1,10}

1. Based on EPA Code of Practice for Small Wastewater Treatment Plants, Publication 500 (1997).

2. When calculating the flow rate for an existing commercial premise, use this table or metered water usage data from the premise's actual or pro-rata indoor use.

3. WELS-rated water-reduction fixtures and fittings - minimum 4 Stars for dual-flush toilets, shower-flow restrictors, aerator taps, flow/pressure control valves and minimum 3 Stars for all appliances (e.g. water-conserving automatic clothes washing machines).

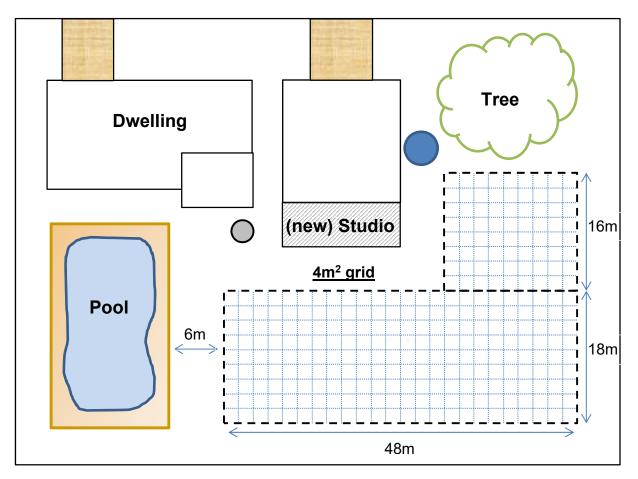
4. These flow rates take into consideration the likelihood of a reliable water supply being currently provided to a premises or in the future (e.g. from groundwater, surface water or reticulated water supply, or a tankered water supply).

5. Where Council is satisfied a household or premises is unlikely to be provided with a reliable water supply (e.g. a rural farming property where groundwater or surface water is unavailable or used only for stock) the design flow rates for Onsite Roof Water Tank Supply listed in the most current version of AS/NZS 1547 may be used.

6. Extra water producing fixtures include, but are not limited to, spa baths.

7. Based on Crites & Tchobanoglous (1998) and EPA Publication 500 (1997).

8. For premises such as public areas, factories or offices that have showers and toilets, use the flow rates for 'Premises with showers and toilets' in the calculations.


9. Number of seats multiplied by the number of seatings i.e., may include multiple seatings for breakfast, morning and afternoon teas, lunch and/or dinner.

10. The organic loading rate must be considered as well as the hydraulic flow rate when selecting the most suitable treatment system.

Step Five – Final Design Solution

(viii) Discuss amongst your group and decide upon the **'most suitable'** OSSM system for the Site layout (below) and the soil conditions you have assessed today.

- (ix) Prepare a case to justify your system selection and determine the appropriate sizing and arrangement for your system on the following development Site.
- LAA required (m²):

Each group will have an opportunity to present their design and will be expected to explain / rationalise how they have reached their conclusions.

	Mounds (basal area) (see Table N1 in AS/NZS 1547: 2012)	24	24	24	24	16	16	8	5 (see Note to Table N()	8	9	(see Note to Table N1)			
(/ DIR) (mm/day)	LPED (see TableM1 in AS/NZS 1547: 2012)	C NN		7	3.5		6			2.5	(see Note 4 in Table MI)		NA		
gation Rates (DLR	Sub-surface and surface irrigation (see Table Mi in AS/NZS 1547: 2012)	5 6	(see Note 2 in Table M1)		4	(see Note 1 in Table MI)	3.5	(see Note 1 in Table MI)		6	(see Note 1 in Table MI)		2	(see Note 2 in Table M1)	
es and Design Irri	Secondary treated effluent applied to Wick Trench & Bed System ⁴	25		30	30	30	30	20	10	12	10	8	5	(see Notes 2 and	3 in Table L1)
Design Loading Rates and Design Irrigation Rates (DLR / DIR) (mm/day)	(ETA) Evapo- transpiration absorption beds and trenches (see Table L1 in AS/NZS 15 47: 2012)	r VN		15	15	10	12	9	in i	8	5		(see Not es 2, 3 & 5 in Table L1)		
	Absorption trenches/beds and Wick Trench & Bed Systems 6 for primary effluent (see Table L1 in AS/NZS 1547:2012)	NA 2		đ	đ	10	10	9	4	ŝ	(see Notes 2 and 3 in	Table LD			
Indicative permeability	(Ksat) (m/d)	33.0	33.0	1.4 - 3.0	15-3.0	0.5-1.5	0.5-1.5	0.12 - 0.5	0.06 - 0.12	0.12 - 0.5	0.06 - 0.12	\$0.05	0.06 - 0.5	\$0.0\$	\$0.05
Soil category		-	28	20	34	30	48	45	40	58	50	S.	68	66	8
Soil structure		Structureless (massive)	Weakly structured	Massive	High / moderate structured	Weakly structured or massive	High / moderate structured	Weakly structured	Massive	Strongly structured	Moderately structured	Weakly structured or massive	Strongly structured	Moderately structured	Weakly structured or massive
Soil texture		Gravels and sands	Sandy loams		Loams			Clay loams			Light clays		Medium to	heavy clays	

Table 9: Soil Categories and Recommended Maximum Design Loading/Irrigation Rates (DLR/DIR) for Land Application Systems ^{12,5}

1. Adapted from Australian Standard AS/NZS I547: 2012 - On-site domestic wastewater management.

The DIR and DLR are recommended maximum application rates for treated effluent. A water balance may indicate that a reduced application rate is required for a specific site.
 The exception is where the soil does not have a high perched or high seasonal (winter) watertable (see AS/NZS 1547).
 See Appendix E for design, installation and maintenance details.

5. Low er application rates may be required for reduced soil permeability in sodic and dispersive soils, soils with a perched or seasonally high watertable or soils with a limiting layer. 6. The application rate may be increased in sandy soils with a high watertable where an advanced secondary treatment system with disinfection replaces a primary treatment system on an existing lot

that is too small to accommodate the maximum DIR for category 1 to 2b soils.

TABLE L1 RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Desi	ign loading ra	te (DLR) (mm/	d)	
Soil	Soil		Indicative	Trei	ds			
category	texture	Structure	permeability (K _{sat}){m/d)	Primary treat	ed effluent	Secondary	ETA/ETS beds and	
			(Salter -)	Conservative Maximum rate		treated effluent	trenches	
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)		
2	Sandy Ioams	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)		
		Massive	1.4 - 3.0	15	25	50	(see	
3	Loams	High/ moderate structured	1.5 - 3.0	15	25	50	Note 4)	
5	LUains	Weakly structured or massive	0.5 - 1.5	10	15	30		
		High/ moderate structured	0.5 - 1.5	10	15	30	12	
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8	
		Massive	0.06 - 0.12	4	5	10	5	
		Strongly structured	0.12 – 0.5	5	8	12	8	
5	Light clays	Moderately structured	0.06 ~ 0.12		5	10		
		Weakly structured or massive	< 0.06			8	5	
		Strongly structured	0.06 - 0.5					
6	Medium to heavy clays	Moderately structured	< 0.06	(s	ee Notes 2 & 3)	2, 3, & 5)	
-		Weakly structured or massive	< 0.06					

NOTES:

- 1 The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- 2 To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).

4 ETA/ETS systems are not normally used on soil Categories 1 to 3.

5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

(Source: AS/NZS 1547:2012 Standards Australia)

				Design irriga	tion rate (E	DIR) (mm/day)
Soil Category (see Note 1)	Soil texture	Structure	Indicative permeability (K _{sat}) (m/d)	Drip irrigation	Spray irrigation	LPED irrigation
1	Gravels and sands	Structureless (massive)	> 3.0	5	5	(see Note 3)
2	Sandy	Weakly structured	> 3.0	(see Note 2)	5	4
2	loams	massive	1.4 – 3.0			4
3	Loomo	High/ moderate structured	1 .5 – 3.0	4	4	3.5
	Loams	Weakly structured or massive	0.5 - 1.5	(see Note 1)	4	3.0
	Clay loams	High/ moderate structured	0.5 - 1.5	3.5	3.5	3
4		Weakly structured	ructured 0.12 - 0.5		3.5	3
		Massive	0.06 - 0.12]		
	Light clays	Strongly structured	0.12 – 0.5			
5		Moderately structured	0.06 - 0.12	3 (see Note 1)	3	2.5 (see Note 4)
		Weakly structured or massive	< 0.06			
		Strongly structured	0.06 - 0.5			
6	Medium to heavy	Moderately structured	< 0.06	2 (see Note 2)	2	(see Note 3)
	clays	Weakly structured or massive	< 0.06			

TABLE M1 RECOMMENDED DESIGN IRRIGATION RATE (DIR) FOR IRRIGATION SYSTEMS

NOTES:

1 For Category 3 to 5 soils (loams to light clays), the drip irrigation system needs to be installed in an adequate depth of topsoil (in the order of 150 – 250 mm of *in situ* or imported good quality topsoil) to slow the soakage and assist with nutrient reduction.

2 For Category 1, 2, and 6 soils, the drip irrigation system has a depth of 100 – 150 mm in good quality topsoil (see CM1 and M3.1).

3 LPED irrigation is not advised for Category 1 or Category 6 soils – drip irrigation of secondary effluent is the preferred irrigation method.

4 LPED irrigation for Category 5 soils needs a minimum depth of 250 mm of good quality topsoil (see M5 and CM7.1).

(Source: AS/NZS 1547:2012 Standards Australia)

Soil Category	Soil texture	Structure	Indicative permeability (K _{sat})(m/d)	Design loading rate (DLR) (mm/d)	
1	Gravels and sands	Structureless (massive)	> 3.0	32	
2	O	Weakly structured	> 3.0	24	
	Sandy loams	Massive	1.4 – 3.0	24	
3	Lasma	High/ moderate structured	1.5 – 3.0	24	
	Loams	Weakly structured or massive	0.5 – 1.5	16	
4		High/ moderate structured	0.5 – 1.5	16	
	Clay loams	Weakly structured	0.12 – 0.5	8	
		Massive	0.06 - 0.12	5 (see Note)	
		Strongly structured	0.12 – 0.5	8	
5	Light clays	Moderately structured	0.06 - 0.12		
		Weakly structured or massive	< 0.06		
		Strongly structured	0.06 – 0.5	5 (see Note)	
6	Medium to heavy clays	Moderately structured	< 0.06		
		Weakly structured or massive	< 0.06		

TABLE N1 RECOMMENDED MOUND DESIGN LOADING RATES

NOTE: To enable use of such soils for on-site wastewater land application, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

(Source: AS/NZS 1547:2012 Standards Australia)

Landscape (description)	Site No
Geology	Surface drainage
Vegetation	Internal drainage
Aspect	Groundwater
Slope (%)	

SOIL SURVEY SHEET

Buffer distances (all distances in metres, upslope or downslope)

Sketch house on the lot	Surface water storage	Groundwater bore or well
	Other buildings	Swimming pool
	Property boundary - upslope	Property boundary - down slope

Profile Description (section numbers refer to Chapter 7 notes)

third	second	top	Soil horizon 6.2.1
			depth (mm) from to
			boundary type 6.2.3
			field texture 6.2.4
			structure -shape, grade, size 6.2.5
			pH (units) Exercise 3
			EC (dS/m) Exercise 2
			dominant colour - moist 6.2.6
			mottles 6.2.7
			dispersion Exercise 1
			coarse fragments 6.2.15

Recorder Date

APPENDIX 2 MODEL SITE REPORT

1 SITE EVALUATORS		
Company	Name(s)	
Address		
ph:	fax:	
Date of assessment: /	/ Signature of evaluator: /	/

2 SITE INFORMATION	
Address/locality of site	Council area
Owner/developer:	ph:
Address:	
Size/shape/layout Site plans attached Photograph attached	yes/no
Intended water supply	rainwater reticulated water supply bore/groundwater
Expected wastewater quantity (litres/day)	
Local experience (information attached regarding on-site sewage management systems installed in the locality)	yes/no

If any site or soil features have not been assessed, note why.

3 SITE ASSESSMENT	
Climate	
Are low temperatures expected (particularly below 15°C)	? yes/no
Where appropriate:	
Rainfall water balance attached	yes/no
Land application area calculation attached	yes/no
Wet weather storage area calculation attached	yes/no
Flood potential	
Land application area above 1 in 20 year flood level	yes/no
Land application area above 1 in 100 year flood level	yes/no
Electrical components above 1 in 100 year flood level	yes/no
Exposure	
Slope	
Landform	
Run-on and seepage	
Erosion potential	
Site drainage	
Fill	
Groundwater	
Horizontal distance to groundwater well used for domest	ic water supply (m)
Relevant groundwater vulnerability map referred to?	yes/no/not available
Level of protection (I – VI)	joornon not available
Bores in the area and their purpose:	
Buffer distances from wastewater	
Management system to:	
Permanent waters (m)	
Other waters (m)	
Other sensitive environments (m)	
Boundary of premises (m)	
Swimming pools (m)	
Buildings (m)	
Is there sufficient land area available for:	
Application system (including buffer distances)	yes/no
Reserve application system (including buffer distances)	yes/no
Surface rocks	<u> </u>

4	SOIL	ASSESSMENT
	0012	/ COLCONNEL 4

Depth to bedrock or hardpan (m)

Depth to high soil watertable (m)

Hydraulic loading rate (where applicable)

Soil structure:

Soil texture:

Permeability category:

Other measures of soil permeability:

Hydraulic loading recommended for soil absorption system (mm/day):

Reasons for the hydraulic loading recommendation:

Coarse fragments (%)

Bulk density (and texture) (g/cm³)

рΗ

Electrical conductivity (dS/m)

Exchangeable sodium percentage

Cation exchange capacity (cmol⁺/kg)

Phosphorus sorption index

Geology & soil landscape survey Presence of discontinuities Presence of fractured subsoil Soil and Landscape map reference:

Dispersiveness

5 SYSTEM SELECTION

Consideration of connection to a centralised sewerage system Approximate distance to nearest feasible connection point: Potential for future connection to centralised sewerage Potential for future connection to reticulated water

high/med/low high/med low/already connected

Type of land application system considered best suited to site:

Why?

Type of treatment system considered best suited to site and application system:

Why?

6. GENERAL COMMENTS

Are there any specific environmental constraints?

Are there any specific health constraints?

Any other comments?

Calculation of evapotranspiration-absorption area size by water balance method

47.00 -4 C i J

(6)	Size	of area (8)/(7)		m														m ²
(8)	Effluent	applied per	month		-													hly area =
(2)	Disposal	rate per month	(3)-(5)+(6)		mm													First trial area = average monthly area =
(9)	DLR	per month		mm														al area = a
(5)	Retained	rainfall	Ŗ	$R_{r} = 0.75R$	mm													First tria
(4)	Rainfall	ĸ		mm														
(3)	Evapo	transpiration	ET	ET = 0.75E	mm													
(2)	Pan	evaporation	ш		mm													
(1)	Month					Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	

	(6)(7)(7)IncreaseDepth ofIncreaseIncreaseDepth ofIncreasein deptheffluentin depthof storedfor monthofeffluent(X - 1)effluent(5)/nmmmm	0												
	(5) (3) - (4) mm													
	(4) Disposal rate per month (7)													
Depth of stored effluent (first trial)	(3) Application rate (8)/(2) mm	1												
stored efflu	(2) First area m²													
Depth of s	(1) Month	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3