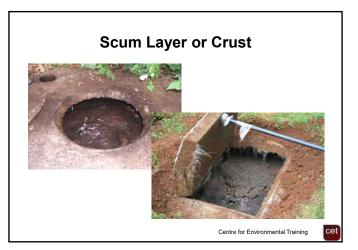


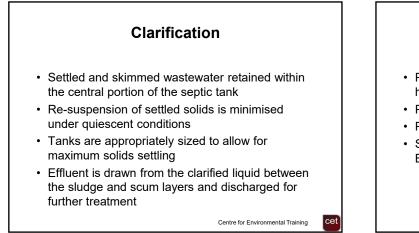
Septic Tank Installation In ground with top of tank at or just above ground surface If installed below ground a watertight riser is fitted to support access and inspection covers May require ground anchors to prevent hydrostatic uplift


Centre for Environmental Training

Flotation

- Fats, oils, grease, surfactants and other low density materials rise to the surface and form a scum layer
- Scum retained in the tank by an inverted outlet pipe (tee) or baffle
- Scum layer precludes oxygen and creates anaerobic conditions which assists in the breakdown of organic solids

Centre for Environmental Training

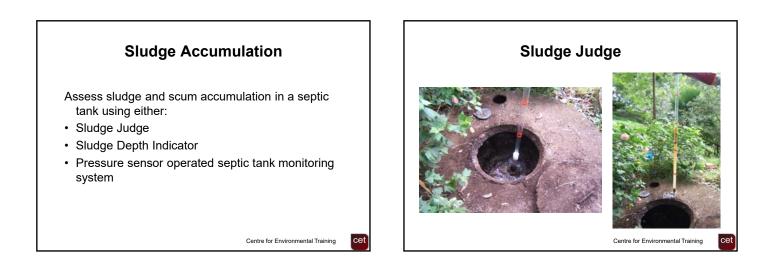


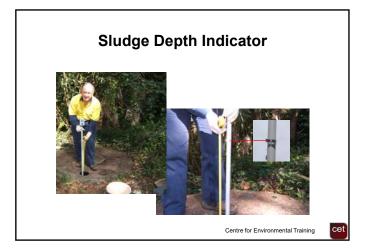
Anaerobic Digestion Organic material retained at the base of the tank undergoes microbiologically facilitated facultative and anaerobic decomposition Organic material is converted to stable compounds and gases such as carbon dioxide (CO_2) , methane (CH_4) and hydrogen sulphide (H_2S) Retained sludge comprised mainly of lignous material that is difficult to decompose and will

continue to accumulate

Centre for Environmental Training

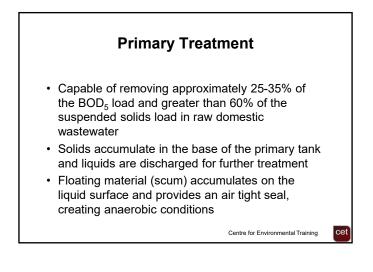
Tank capacity	Average daily flow (L)	Bedrooms	Persons
3,000L	Up to 1,000L	1-3	1 - 5
3,500L	1,000 - 1,400L	4	6 - 7
4,000L	1,400 - 1,600L	5	8
4,500L	1,600 - 2,000L	6	9 - 10
		ndards New Zealand	rce: Standards Australia Sta
L	Centre for f	ndards New Zealand	urce: Standards Australia Sta

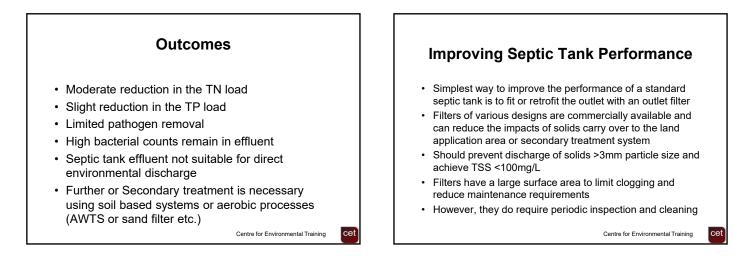

Septic Tank Capacity


All-waste septic tank capacities (AS/NZS1547:2012)

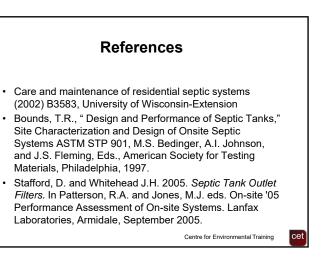
Sludge Accumulation

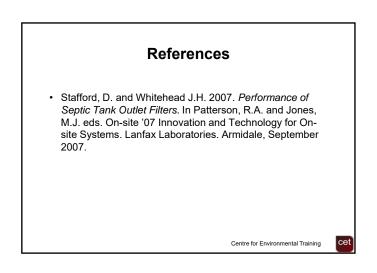
- Sludge in a residential all-waste septic tank accumulates at approximately 80 L/person/year
- Pumpout interval is determined by tank capacity required for 24 hour residence time for daily load (varies from system to system)
- For example, a 3,000 L septic tank provides 24 hour residence time for 1,000 L daily load and 2,000 L sludge and scum capacity i.e. 5 persons x 80 L/person/year x 5 years


Centre for Environmental Training



Parameter	Untreated domestic wastewater	Primary treated effluent	
BOD ₅	200 - 300 mg/L	~ 150 mg/L	
Suspended Solids	200 - 300 mg/L	~ 50 mg/L	
Total Nitrogen	20 - 100 mg/L	50 - 60 mg/L	
Total Phosphorus	10 - 25 mg/L	10 - 15 mg/L	
Faecal Coliforms	10 ³ - 10 ¹⁰ cfu/100mL	10 ⁵ - 10 ⁷ cfu/100mL	





	Co	ncentration (mg	/L)	
Parameter	Typical ST effluent	Without effluent filter	With effluent filter	% Improvement
BOD₅	450	180	130	28%
TSS	503	80	50	38%
NH ₃ -N	41	40	40	0%
Org. N-N	29	28	28	0%
TKN-N	70	68	68	0%
Org. P-P	6.5	6	6	0%
Inorg. P-P	11	10	10	0%
TP	17	16	16	0%
Oil and grease	164	25	15	(40%)

Septic Tank Calculations

Question 1.

A new three bedroom house is supplied with reticulated water and has a 3,000L septic tank installed on construction. Assume that five people occupy the house.

- (i) Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
- (ii) Calculate the detention time of effluent in the septic tank at the outset.

(iii) If sludge accumulates at the rate of 80L/person/year, calculate the amount of sludge that will accumulate in one year.

Question 2.

An older three bedroom house is supplied with reticulated water and is occupied by three people. On inspection, it is determined that the septic tank is of 2,300L capacity, but the tank is half full of sludge.

- (i) Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
- (ii) Calculate the annual sludge accumulation based on a sludge accumulation rate of 80L/person/year.
- (iii) A minimum of 24 hours detention must be maintained in the tank at all times. Calculate the length of time remaining before a pumpout will be required.

Septic Tank Calculations

ANSWERS

Question 1.

- (i) Daily hydraulic load = 5 x 150L/person/day = 750L/day
- Septic tank volume = 3,000L
 Daily hydraulic load = 750L/day
 Detention time = 3,000L / 750L/day = 4 days
- (iii) Occupancy = 5 persons
 Sludge accumulation rate = 80L/person/year
 Annual sludge accumulation = 5 persons x 80L/person/year = 400L/year

Question 2.

- (i) Daily hydraulic load = 3 x 150L/person/day = 450L/day
- (ii) Occupancy = 3 persons
 Sludge accumulation rate = 80L/person/year
 Annual sludge accumulation rate = 3 persons x 80L/person/year = 240L/year
- (iii) Tank capacity = 2,300L
 Daily hydraulic load = 450L
 Volume of sludge in tank = 2,300L / 2 = 1,150L
 Volume available for further sludge accumulation = 1,150L 450L = 700L
 Sludge accumulation rate = 240L / year
 Maximum time remaining prior to pumpout 700L / 240L/year = 2.9 years