Inspection and Troubleshooting of Onsite Wastewater Management Systems

Inspection Equipment and Use
Testing and Monitoring On-site
Systems

Centre for Environmental Training

Inspection Equipment and Use

- Every inspection will need equipment
- · Each item has a particular role
 - WHS PPE
 - Access
 - · Testing and monitoring
 - Tracing
 - Records

Centre for Environmental Training

Inspection Equipment Checklist Seffety recautions should be taken when using chemicals. Read Seffety that Sheets and use PPE. Items may include the following: - Cannot authorized officer and and name bodge - Safety checklist (JAS/ Take-B) - Inspection pib list -

Inspection Equipment

- · The relevant PPE must be available
 - UV protection (e.g. clothing, hat and sunscreen)
 - Gloves (disposable and safety gloves)
 - · Safety glasses
 - Insect protection (repellent, gaiters)
 - Shoes (uneven ground/ safety and gumboots)
- · First aid and snake bite kits

Centre for Environmental Training

Testing and Monitoring On-site Systems

- Monitoring is essential when the performance of a system must be accurately quantified
- However, rigorous monitoring of wastewater quality and quantity requires a significant amount of time and resources
- Monitoring of on-site systems may be justified where problem identification is difficult or where the performance of a new / emerging technology needs to be verified

Centre for Environmental Training

Monitoring Parameters

Hydraulic Load

- Without useful data on hydraulic load, wastewater quality data can be of little value
- As a minimum it should be measured at the same frequency as bio-chemical data
- Water meter readings may be adequate (excluding external water use) but data loggers should be considered

Monitoring Parameters

Household Behaviour

- Where possible, try to establish the timing of specific activities that generate wastewater (e.g. laundry, showers)
- If appropriate, ask the residents to keep a diary of these details
- Identify the type of cleaning agents, detergents, disinfectants and antibiotic inputs to the system

Centre for Environmental Training

Monitoring Parameters

Biochemical Oxygen Demand (BOD₅)

- BOD₅ is the quantity of oxygen used in the degradation of organic matter in water
- BOD₅ analysis is undertaken in a laboratory using a standard analytical technique
- A reduction in organic load is the key aim of Secondary treatment

Centre for Environmental Training

Monitoring Parameters

Total Suspended Solids (TSS)

- TSS include organic and inorganic material suspended in a sample
- TSS analysis undertaken in a laboratory using a standard analytical technique
- High TSS loads can have a detrimental effect on downstream processes and cause blockages in land application areas

Centre for Environmental Training

Monitoring Parameters

Faecal Coliforms (FC)

- FC bacteria are commonly used as an indicator of faecal contamination. Can be used as an indicator of the likelihood of pathogen contamination
- FC analysis is undertaken in a laboratory using a standard analytical technique
- FC concentrations will vary by orders of magnitude depending on the level of treatment

Centre for Environmental Training

Monitoring Parameters

<u>pH</u>

- Approximate pH can be checked using a calibrated instrument or colour comparator strips
- Should be near neutral (7.0). Wide / frequent fluctuation of pH is detrimental to processes (reduced solids settleability / micro-biological activity)
- pH should be kept between 6.0 and 9.0

Monitoring Parameters

Electrical Conductivity

- Measure of the ability of a solution to conduct an electrical current
- Conductivity increases as the proportion of ions in solution increase
- Typically measured in the field using a calibrated analytical probe. Results typically expressed as deciSiemens per metre (dS/m) or microSiemens per centimetre (uS/cm)

Centre for Environmental Training

Monitoring Parameters

Nitrogen

- Nitrogen (N) is found in three forms organic N, ammoniacal N and oxidised N
- Total Kjeldahl Nitrogen (TKN) is the concentration of organic N and ammoniacal N. These forms of N are dominant in anaerobic effluent
- Total Oxidised Nitrogen (TON) is the concentration of nitrate (NO₃) and nitrite (NO₂)

Centre for Environmental Training

Monitoring Parameters

Nitrogen

- The dominant form of nitrogen will depend mainly on oxygen status, but also pH
- Dominant form of nitrogen can vary over very short periods of time
- Need to look at specific forms when monitoring to gain an understanding of treatment efficiency

Centre for Environmental Training

Monitoring Parameters

Phosphorus

- Typically found in one of three forms in domestic wastewater: orthophosphate (e.g. PO₄⁻³, HPO₄⁻²); polyphosphate (e.g. P₂O⁻⁴) and organic phosphate
- Orthophosphates are readily available for biological metabolism, while poly and organic phosphates must first undergo some form of conversion

Centre for Environmental Training

Monitoring Parameters

Dissolved Oxygen (DO)

- DO can be used to assess the efficiency of most Secondary treatment processes
- Secondary treated effluent should generally have a high DO (>2mg/L)
- But... be careful, DO can fluctuate significantly within very short periods

Monitoring Parameters

Other Parameters

- · Total Oil and Grease (TOG)
- Surfactants (MBAS methylene blue active substances)
- Chemical Oxygen Demand (COD)
- · Free Residual Chlorine (FRC)
- Volatile Suspended Solids (VSS)
 Centre for Environmental Training

Sampling Programs

- Care should be taken when sampling effluent to use correct procedure
- Sample bottles must be rinsed with deionised water before being taken out to site. Bottles for laboratory analysis may need to be acid washed
- Consult individual laboratories for advice on sample bottles (number, volume of sample)
- Appropriate PPE must be worn (e.g. latex or vinyl coated gloves)

Centre for Environmental Training

Sampling Programs

- · Bottle should be rinsed with the sample liquid three times before collection (except for microbiological sample bottles)
- Do not leave an air gap in the bottle as this can affect the result of some analyses
- Clearly label each sample bottle (location, time, date, sampled by)
- Keep laboratory samples at ~4°C (i.e. esky on ice) and deliver / analyse as soon as possible

Centre for Environmental Training

Sampling Programs

- · Careful consideration is required when selecting:
 - · Sampling location
 - · Sampling time
 - · Sampling frequency
 - · Parameters for analysis

Centre for Environmental Training

Sampling Programs

- · Programs to measure the specific treatment efficiency of a particular component must include monitoring of both influent and effluent
- · Domestic wastewater is subject to significant temporal variation. Grab samples are only a snapshot of performance
- · Composite sampling can allow assessment of average wastewater quality over a period

Centre for Environmental Training

Sampling Programs

- Notwithstanding, grab samples can be useful when conducting compliance testing of multiple systems
- Realistically, only situations with significant legal / market implications or a high risk of impact will justify greater focus
- · However it is important to recognise that effluent quality data does not automatically provide an accurate diagnosis of system performance

Monitoring Periods

- What is an appropriate frequency and duration for monitoring?
- Basic compliance testing: a grab sample of effluent once a week for a month (each sample should be taken at a different time of day)?
- Long-term treatment efficiency: 24 hour composite samples of influent and effluent every day for a month?

Centre for Environmental Training

Interpretation of Results

- It is not always advisable to assess the results of monitoring against regulatory standards in isolation
 - Consider the resolution of the data (i.e. the suitability of sampling frequency and duration)
 - Consider temporal variation (e.g. hydraulic load / peak pollutant periods)
 - Consider potential external impacts on readings (sampling errors, rainfall, higher than average pollutant inputs)

Centre for Environmental Training

Typical Treatment Performance

Parameter	Septic Tank	Secondary ¹	Advanced Secondary ²
BOD ₅ (mg/L)	140-200 (180)	5-50 (20)	5-15 (10)
TSS (mg/L)	30-100 (80)	5-50 (30)	5-15 (10)
Faecal Coliforms (cfu/100ml) ³	10 ⁶ -10 ⁸	10 ³ -10 ⁴	10 ¹ -10 ³
TN	40-100 (60)	15-50 (30)	10-50 (20)
TP	5-15 (10)	5-10 (8)	5-10 (8)

Source: USEPA Onsite Wastewater Treatment Systems Manual 2002.

Note 1: Traditional package plants and reed beds with no disinfection.

Note 2: Sand filters, some biofilters and textile filters.

Note 3: Secondary or advanced secondary effluent can achieve faecal coliform concentrations <100cfu/100ml with active disinfection.

Centre for Environmental Training

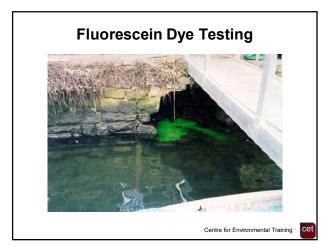
Inspection Equipment

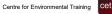
- Access
 - Basic tools screwdrivers, sockets, multi-grips, shifters, hammer etc.
 - · Battery drill or impact driver and
 - · Crowbar, wrecking bar, hook, lid lifter

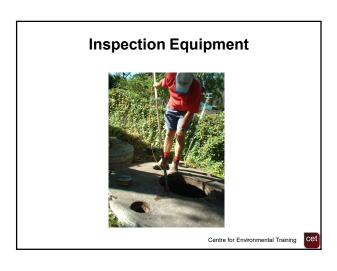
Centre for Environmental Training

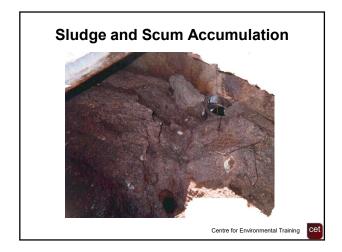
Inspection Equipment

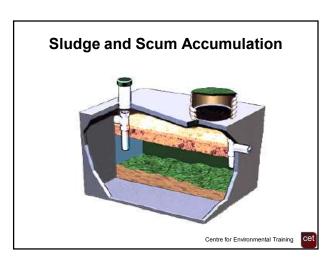
Centre for Environmental Training


Inspection Equipment


- Tracing Flows
 - Fluorescein or Rhodamine dye for checking flow paths
 - Nessler's reagent (detects ammonia rich water)






Inspection Equipment

- Measuring solids and wastewater characteristics:
 - Sludge measuring device (e.g. Sludge Judge)
 - Imhoff cone or equivalent (activated sludge plants)
 - Dissolved Oxygen (DO) test kit
 - pH strips
 - · Turbidity tube
 - Free residual chlorine test kit

Inspection Equipment

- Sampling
 - Sampling pole
 - Sample jars
 - Esky and ice
 - Chain of Custody sheet/s
 - Sharps container

Centre for Environmental Training

cet

Inspection Equipment

- Hygiene
 - PPE (gloves, glasses)
 - Sanitiser
 - Disinfectant
 - Soap and water
 - Paper towel
 - Rubbish bag

