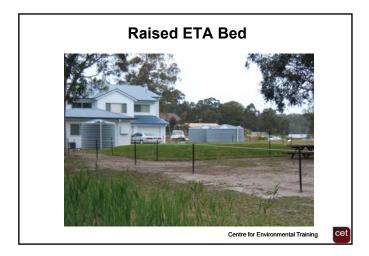
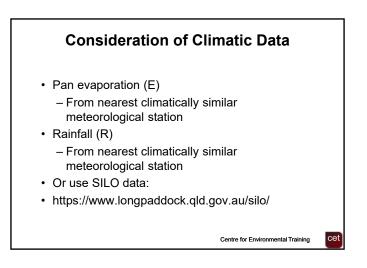
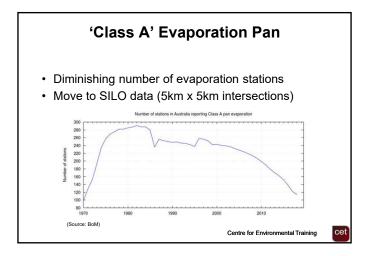
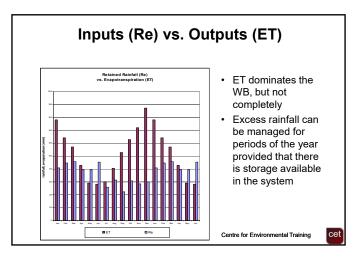
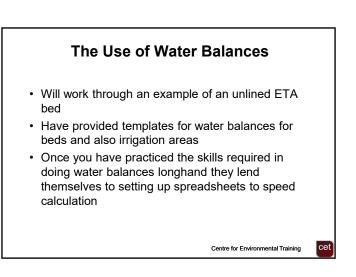

Centre for Environmental Training


- Crop Factors (Cf), Evaporation (E) and Evapotranspiration (ET) – explained further in water balance example later
- Capillary Water movement of water laterally and upwards under surface tension
- Field Capacity (FC) upper limit of available water storage in soil / medium
- Void Ratio (*n*) proportion of bed available for water/air storage


Centre for Environmental Training







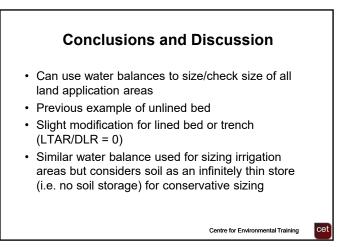
				-				
Month	Pan evapo- ration E	Evapotran spiration ET ET=0.25E	Raundall	Retained rainfall R, R,=0.758	LTAR per anonth	Disposal rate per month	Effluent applied per month	Size of area
			mm	at, +0.758	in m	1000	1.	
	101201	mim	109	#1.75	0	74.01	27900	376.90
Jain	207.7	155.8			100			111111
Fetr	170.8	126.1	119	89.25	0	38.85	25200	645.65
Mar	151.9	113.9	122	91.50	0	22.43	27900	1244.15
Apr	114.0	#5.5	105	78.75	0	6.75	27000	4000.00
May	77.5	58.1	105	78.75	0	-20.63	27900	-1352.73
Jun	75.0	56.3	321	90.75	0	-34.50	27000	-782.61
Jul	80.6	60.5	69	51.75	0	8.70	27900	3206.90
Aug	108.5	81.4	14	63.00	0	18.38	27900	1518.37
Sep	141.0	105.8	59	44.25	0	61.50	27000	439.02
Oct	167.4	125.6	82	61.50	0	64.05	27900	435.60
Nov	192.0	144.0	76	57.00	0	87.00	27000	310.34
Dec	232.5	174.4	80	60.00	0	114.38	27900	243.90

			0.0		ed E			•
Manth	First total arra	Applica- tion rate OI mm	Disposal rate per menth (43 mm	(3) - (4) mm	Increase in depth of stored offluent mm	Depth of effluent Tos manth (X - D mm	Increase in depth af effluent mm	Cemp ied depth efflue manif (X) mm
Dec	1000							
Jan		27.9	74.01	-46.11	-153.70	0	+-153.70	+ 0
Feb		25.2	38.85	-13-65	-45.50	0	+ 45.50	× 0
Mar		27.9	22.43	5.47	18.23	0	+ 18.23	+ 18.23
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	+ 85.73
May		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.5¢
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	+ 452.56
.pul		27.9	8.70	19.20	64.00	452.50	+ 64.00	+ 316.50
Aug	(27.8	18.38	9.52	31.73	316.50	+ 31.73	= 348.27
Sep		27.0	61.50	-34.50	-115-00	548.23	+ -115.00	+ 433.23
Oct	1	27.9	64.05	-36.15	-120.50	433.23	+ -120.50	+ 312.7
Nov		27.0	87.00	-60.00	-200.00	312.79	+ -200.00	= 112.73
Dec		27.9	114.38	-85.45	-288.27	112.79	+ -258.27	= 0

		Wa	ter	Ba	lan	ce E	Exe	rcis	se			
	ootra e be	anspi droo	iratio m / 1	on-at five p	osorp perso	otion on d	/see welli	page ng			ra	
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	6.3	5.4	4.4	3.3	2.1	1.8	2.0	3.1	4.3	5.4	5.9	7.0
MEAN MONTHLY RAINFALL (mm)	93.3	99.6	92.1	70.3	58.8	56.4	35.9	45.8	40.2	64.1	76.1	71.7
							Ce	ntre for E	nvironme	ental Trai	ning	ce

Water Balance Exercise

 Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes)


Centre for Environmental Training

Water Balance Exercise

- Calculate the evapotranspirationabsorption/seepage area using the worksheets provided on the following pages
- The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 400 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 350 mm)
- Conventional beds may have between 300 mm and 600 mm of aggregate, ETA/ETS beds 400 mm of aggregate and sand
 Centre for Environmental Training

(1) Month	(2) Pan evaporation E mm	(3) Evapo transpiration ET ET = 0.75E mm	(4) Rainfall R mm	(5) Retained rainfall R _r R _r = 0.75R mm	(6) DLR per month mm	(7) Disposal rate per month (3)-(5)+(6) mm	(8) Effluent applied per month L	(9) Size of area (8)/(7) m ²
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
				First tria	al area = a	verage mont	hly area =	n

(1) Wonth	(2) First trial area m ²	(3) Application rate (8)/(2) mm	(4) Disposal rate per month (7) mm	(5) (3) - (4) mm	(6) Increase in depth of stored effluent (5)/n mm	Depth of effluent for month (X - 1) mm	(7) Increase in depth of effluent + (6) mm	Computed depth of effluent month (X) mm
Dec			-	-		0		
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
	ve void s	pace factor. For	r imported d	urable aggr	egate, n = 0.		Environmental 1	Training C6

cet

References • Patterson RA, (2006). Evapotranspiration Bed Designs for Inland Areas. Septic Safe Technical Sheet Reference 05/15. NSW Department of Docal Government, July 2006

Size of area	'n,	376.90	648.65	1244.15	4000.00	-1352.73	-782.61	3206.90	1518.37	439.02	435.60	310.34	243.93
Effluent applied per month	J	27900	25200	27900	27000	27900	27000	27900	27900	27000	27900	27000	27900
Disposal rate per month	шш	74.01	38.85	22.43	6.75	-20.63	-34.50	8.70	18.38	61.50	64.05	87.00	114.38
LTAR per month	шш	0	0	0	0	0	0	0	0	0	0	0	0
Retained rainfall R,=0.75R	шш	81.75	89.25	91.50	78.75	78.75	90.75	51.75	63.00	44.25	61.50	57.00	60.00
Rainfall R	шш	109	119	122	105	105	121	69	84	59	82	76	80
Evapotran -spiration ET ET=0.75E	шш	155.8	128.1	113.9	85.5	58.1	56.3	60.5	81.4	105.8	125.6	144.0	174.4
Pan evapo- ration E	-spiration-spirationrainfallper monthrate per per monthETRRRRETRRRmmmmmmmmmmmmmmL155.8109 81.75 0 74.01 27900 3155.8109 81.75 0 38.85 27900 3155.8109 89.25 0 38.85 27900 1113.9122 91.50 0 22.43 27900 185.5105 78.75 0 22.43 27900 385.5105 78.75 0 22.43 27900 385.5105 78.75 0 22.43 27900 385.1105 78.75 0 22.43 27900 3 85.3121 90.75 0 34.50 27900 3 81.484 63.00 0 8.70 27900 3 81.484 63.00 0 64.05 27900 4 125.682 61.50 0 64.05 27900 4 125.682 61.50 0 64.05 27900 4	192.0	232.5										
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

m ¹ Dec 1000 Jan Feb		per month (4)		of stored effluent	for for month (X - 1)	of effluent	depth of effluent month
	шш	шш	шш	шш	шш	шш	шш
Jan Feb							
Feb	27.9	74.01	46.11	-153.70	, 0	+ -153.70	= 0
	25.2	38.85	-13.65	45.50	0	+ -45.50	= 0
Mar	27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
Apr	27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May	27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun	27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul	27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep	27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct	27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov	27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec	27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

Table 4. Depth of stored effluent.

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption/seepage area size by the water balance method.

Using the following information using your Course Notes, calculate the minimum area and depth of an evapotranspiration-absorption/seepage area for a three bedroom / five person dwelling.

Bureau of Meteorology rainfall and pan evaporation data for the nearest station is provided below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	6.3	5.4	4.4	3.3	2.1	1.8	2.0	3.1	4.3	5.4	5.9	7.0
MEAN MONTHLY RAINFALL (mm)	93.3	99.6	92.1	70.3	58.8	56.4	35.9	45.8	40.2	64.1	76.1	71.7

Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Calculate the evapotranspiration-absorption/seepage area using the worksheets provided on the following two pages.

The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 550 mm).

Calculation of evapotranspiration-absorption area size by water balance method

4th -4 C i J

(6)	Size	of area (8)/(7)		m ²														m ²
(8)	Effluent	applied per	month															hly area =
(7)	Disposal	rate per month	(3)-(5)+(6)		mm													First trial area = average monthly area =
(9)	DLR	per month		mm														I area = a
(5)	Retained	rainfall	Ŗ	$R_{r} = 0.75R$	mm													First tria
(4)	Rainfall	R		mm														
(3)	Evapo	transpiration	ET	ET = 0.75E	mm													
(2)	Pan	evaporation	ш		mm													
(1)	Month					Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	

	(7)(7)Depth of effluent(7)Depth of effluent(7)for month (X - 1)of effluent(X - 1)effluent effluentmmmm	0												
	(6) Increase in depth of stored effluent (5)/n mm	1												
	(4) (5) Disposal (3) - (4) rate mm per mm (7) mm													
Depth of stored effluent (first trial)	(3) Application rate (8)/(2) mm	1												
oth of stored ef	(1) (2) Month First trial area m²	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3

Design Wastewater Flow	0	L/day														
Design Percolation Rate	R	mm/wk														
Parameter	Symbol	Formula	Units	5	H	W	¥	M	5	5	Y	s	•	N	P	Total
Days in month	e		days			F										
Precipitation	(mm/month													
Evaporation	E		mm/month													
Crop factor	(C)	•	•													
Outputs																
Evapotranspiration	(ET)	ExC	mm/month				Γ									
Percolation	9	(R/7) x D	mm/month													
Outputs		(ET+B)	mm/month													
Inputs																
Precipitation	6		mm/month													
Possible Effluent	6	(ET + B) - P	mm/month													
Irrigation																
Actual Effluent	Θ	H/12	mm/month													
Production																
Inputs		(P + I)	mm/month													
Storage	(S)	(P+I) - (ET+B)	mm/month													
Cumulative storage	(W)		mm													
IrrigationArea	Ð	365 x Q/H	⁷ 8			 										
Storage	ε	largest M	mm													
		0001/(T * N	'n													

Minimum Area Method Water Balance and Wet Weather Storage Calculations

.1.

			, , ,												•							
			,																			
			•																			
		>																				
												_	+			<u> </u>					_	
																		_				
		4	•									_										_
			,																			
		Tinite	davs	mm/month	mm/month	•		mm/month	mm/month	mm/month		mm/month	mm/month	mm/month		mm/month		mm	a		mm mm	
L/day mm/wk	m ²	Formula		•		•			(Q x D)/L	(P+W)		ExC	(R/I) x D	(ET+B)		(P+W) - (ET+B)				- largest M	- largest M	largest M
ଚିକ	33	Sembol	0	(e)	E	(C)		(P)	(M)			E) 8			(S)	W	(INI)	(IMI)		(V)	
Design Wastewater Flow Design Percolation Rate	Land Area	Davamatar	Davs in month	Precipitation	Evaporation	Crop factor	Tnnuts	Precipitation	Effluent Irrigation	Inputs	Outsute	Fvanotransniration	Percolation	Outputs		Storage	Cumulative storage	Annual Contractor		Storage	Storage	Storage

Monthly Water Balance used to Determine Wet Weather Storage for a Medium Rainfall Region with a Nominated Irrigation Area

.t.