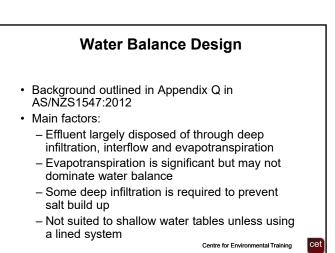
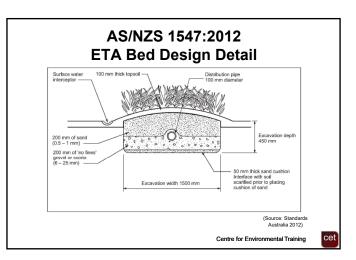
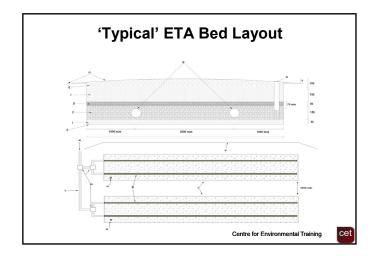

ETA/S Systems designed to:


- Maximise evapotranspiration
- · Reduce absorption (drainage) in unlined systems
- · Avoid absorption in lined systems
- Provide alternative to conventional trenches/beds in areas of low permeability soils (<0.5-1.5 m/d) e.g. clay loams, light, medium and heavy clays

Centre for Environmental Training

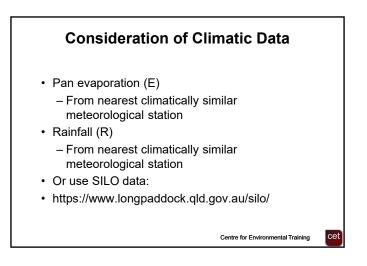
cet

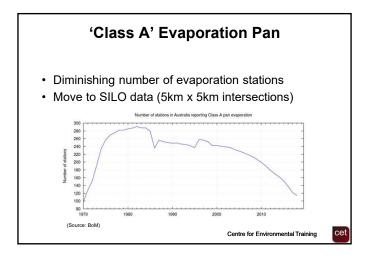


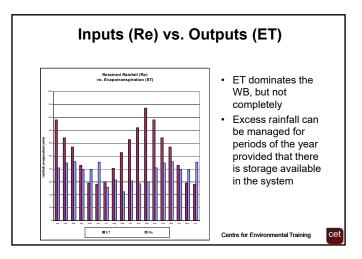


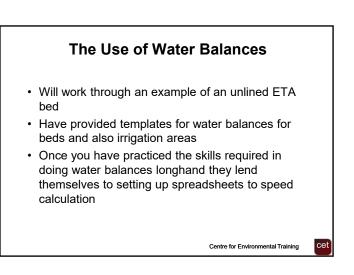
Important Components of ET Bed Design

- Crop Factors (Cf), Evaporation (E) and Evapotranspiration (ET) – explained further in water balance example later
- Capillary Water movement of water laterally and upwards under surface tension
- Field Capacity (FC) upper limit of available water storage in soil / medium
- Void Ratio (*n*) proportion of bed available for water/air storage


Centre for Environmental Training





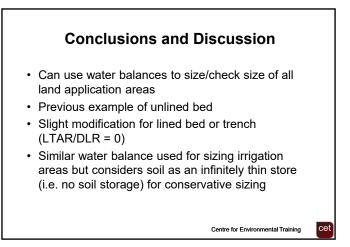


Month	Pan evapo- ration E	Evapotran -spiration ET ET=0.75E	Rainfall R	Retained rainfall R, R.=0.75R	LTAR per month	Disposal rate per month	Effluent applied per month	Size of area
	25	mm	mm	mm	mm	mm	E.	m²
lan	mm 207.7	155.8	109	81.75	0	74.01	27900	376.90
Feb	170.8	128.1	119	89.25	0	38.85	25200	648.65
Mar	151.9	113.9	122	91.50	0	22.43	27900	1244.15
	151.9	85.5	105	78.75	0	6.75	27000	4000.00
Apr May	77.5	58.1	105	78.75	0	-20.63	27900	-1352.73
Iun	75.0	56.3	121	90.75	0	-34.50	27000	-782.61
Jun	80.6	60.5	69	51.75	0	8.70	27900	3206.90
Aug	108.5	81.4	84	63.00	0	18.38	27900	1518.37
Sep	141.0	105.8	59	44.25	0	61.50	27000	439.02
Oct	167.4	125.6	82	61.50	0	64.05	27900	435.60
Nov	192.0	144.0	76	57.00	0	87.00	27000	310.34
Dec	232.5	174.4	80	60.00	0	114.38	27900	243.93

		Jun			ed E			
Month	First trial area m ¹	Applica- tion rate (3)	Disposal rate per month (4) mm	(3) - (4) mm	Increase in depth of stored effluent mm	Depth of effluent for month (X - 1) mm	Increase in depth of effluent mm	Comp ted depth effluer month (X) mm
Dec	1000							
Jan		27.9	74.01	-46.11	-153.70	0 .	+ -153.70	= 0
Feb		25.2	38.85	-13.65	-45.50	0	+ -45.50	= 0
Mar		27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
Мау		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul		27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	1.1	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep		27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct		27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov		27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec		27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

Water Balance Exercise

 Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes)


Centre for Environmental Training

Water Balance Exercise

- Calculate the evapotranspirationabsorption/seepage area using the worksheets provided on the following pages
- The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 400 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 350 mm)
- Conventional beds may have between 300 mm and 600 mm of aggregate, ETA/ETS beds 400 mm of aggregate and sand
 Centre for Environmental Training

(1) Month	(2) Pan evaporation E mm	(3) Evapo transpiration ET ET = 0.75E mm	(4) Rainfall R mm	(5) Retained rainfall R _r R _r = 0.75R mm	(6) DLR per month mm	(7) Disposal rate per month (3)-(5)+(6) mm	(8) Effluent applied per month L	(9) Size of area (8)/(7) m ²
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								n

(2) First trial area m ²	(3) Application rate (8)/(2) mm	(4) Disposal rate per month (7) mm	(5) (3) - (4) mm	(6) Increase in depth of stored effluent (5)/n mm	Depth of effluent for month (X - 1) mm	(7) Increase in depth of effluent + (6) mm	Computed depth of effluent month (X) mm
		-	-	-	0		
	First trial area	First Application trial rate area (8)/(2) m ² mm	First Application Disposal trial rate area (8)/(2) per month m ² mm (7) mm	First Application Diaposal (3) - (4) trial area (8)/(2) per mm m ² mm (7) mm	First trial area Application (8)/(2) Disposal per month (3) - (4) Increase in depth of stored effluent m ² mm (7) mm effluent (5)/n mm mm mm mm	First trial area Application (8)/(2) Disposal per month (3) - (4) Increase in depth of officient of stored (5)/n Depth of officient (X - 1) m ² mm (7) mm effluent (5)/n mm mm mm mm mm	First trial area Application (8)/(2) Disposal per month (3) - (4) Increase in depth of stored effluent Depth of in depth of stored (5//n Increase of month effluent m ² mm (7) mm mm effluent (5//n mm mm mm mm mm mm

cet

References • Patterson RA, (2006). Evapotranspiration Bed Designs for Inland Areas. Septic Safe Technical Sheet Reference 05/15. NSW Department of Docal Government, July 2006

Size of area	'n,	376.90	648.65	1244.15	4000.00	-1352.73	-782.61	3206.90	1518.37	439.02	435.60	310.34	243.93
Effluent applied per month	J	27900	25200	27900	27000	27900	27000	27900	27900	27000	27900	27000	27900
Disposal rate per month	шш	74.01	38.85	22.43	6.75	-20.63	-34.50	8.70	18.38	61.50	64.05	87.00	114.38
LTAR per month	шш	0	0	0	0	0	0	0	0	0	0	0	0
Retained rainfall R,=0.75R	шш	81.75	89.25	91.50	78.75	78.75	90.75	51.75	63.00	44.25	61.50	57.00	60.00
Rainfall R	шш	109	119	122	105	105	121	69	84	59	82	76	80
Evapotran -spiration ET ET=0.75E	шш	155.8	128.1	113.9	85.5	58.1	56.3	60.5	81.4	105.8	125.6	144.0	174.4
Pan evapo- ration E	шш	207.7	170.8	151.9	114.0	77.5	75.0	80.6	108.5	141.0	167.4	192.0	232.5
Month		Jan	Feb	Mar	Apr	May	lun	Jul	Aug	Sep	Oct	Nov	Dec

Month	First trial arca	Applica- tion rate (3)	Disposal rate pcr month (4)	(3) - (4)	Increase in depth of stored effluent	Depth of effluent for month (X - 1)	Increase in depth of effluent	Compu- ted depth of effluent month
	۲ ۳	шш	mm	шш	шш	шш	шш	с ШШ
Dec	1000							
Jan		27.9	74.01	-46.11	-153.70	, 0	+ -153.70	= 0
Feb		25.2	38.85	-13.65	45.50	0	+ -45.50	= 0
Mar		27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
Apr		27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May		27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun		27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul	y	27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	•	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep		27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct		27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov		27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec		27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

Table 4. Depth of stored effluent.

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption/seepage area size by the water balance method.

Using the following information using your Course Notes, calculate the minimum area and depth of an evapotranspiration-absorption/seepage area for a three bedroom / five person dwelling.

Bureau of Meteorology rainfall (Mornington) and pan evaporation (Melbourne Airport) data is provided below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	8.1	7.0	5.7	3.8	2.5	1.8	2.0	2.7	4.0	5.2	6.0	7.4
MEAN MONTHLY RAINFALL (mm)	44.3	42.6	48.7	62.3	70.0	71.6	68.5	71.1	71.0	68.9	60.8	53.5

Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Calculate the evapotranspiration-absorption/seepage area using the worksheets provided on the following two pages.

The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 550 mm).

Calculation of evapotranspiration-absorption area size by water balance method

444 4 4 C i v

(6)	Size	of area (8)/(7)		m ²														2
(8)	Effluent	applied per	month		-													L. 1
(2)	Disposal	rate per month	(3)-(5)+(6)		mm													— oone uldhugan engenere — oone leint toui1
(9)	DLR	per month		mm														
(2)	Retained	rainfall	R,	$R_{r} = 0.75R$	mm													
(4)	Rainfall	Ľ		mm														
(3)	Evapo	transpiration	ET	ET = 0.75E	mm													
(2)	Pan	evaporation	ш		mm													
(1)	Month					Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Νον	Dec	

	Computed depth of effluent month (X) mm									Jacob Contraction of the second se				
	(7) Increase in depth of + (6) mm													
	Depth of effluent for month (X - 1) mm	0												
	(6) Increase in depth of stored effluent (5)/n mm													
	(5) (3) - (4) mm													
	(4) Disposal rate per mm (7)	1												
Depth of stored effluent (first trial)	(3) Application rate (8)/(2) mm													
stored efflu	(2) First trial area m²													
Depth of s	(1) Month	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3

Design Wastewater Flow	0	L/day														
Design Percolation Rate	8	mm/wk														
Parameter	Symbol	Formula	Linits	-	F	N	-	N	-	-	-	v	c	Z	P	Total
				ŗ	·		•		ŗ	,	•	,	,	•	,	
Days in month	n)		days													
Precipitation	Ð	•	mm/month													
Evaporation	E	•	mm/month													
Crop factor	(C)		•													
Dutputs																
Evapotranspiration	(EI)	ExC	mm/monfh			F										
Percolation	e	(R/7) x D	mm/month			F										
Outputs		(ET+B)	mm/month													
Inputs																
Precipitation	£		mm/month													
Possible Effluent	6	(ET + B) -P	mm/month													
Irrigation																
Actual Effluent	e	H/12	mm/month													
Production																
Inputs		(P + I)	mm/month													
Storage	(<u>s</u>)	(P+I) - (ET+B)	uguom/mm													
Cumulative storage	(W)	•	mm													
IrrigationArea	Ð	365 x Q/H	'n													
Storage	ε	largest M	mm													
		V + T N 1000	200		-											

Minimum Area Method Water Balance and Wet Weather Storage Calculations

.1.

Design Wastewater Flow	0	L/day														
Design Percolation Rate	ନ	mm/wk														
	Ð	m²														
	•	-		•	F	:	•	;	•	•	•	¢	4	;	4	F
*1	Symbol	r ormula	Units	-	4	W	ł	N	-	-	ł	^	•	2,	┓	Lotal
	ê		days													
	Ð		mm/month													
	Ð		mm/month													
	<u>ତ</u>															
	Ð		mm/month													
	E	(Q x D)/L	mm/month													
		(P+W)	mm/month													
┢	E	F C	mm/month					T		T	T	T	T	T	F	
+	Ìe	R/Dx D	mm/month	Γ		T	T	T	T	T	t	t	t	t	t	
	ì	(ET+B)	mm/month					T		T		\uparrow		T		
	(S)	(P+W) - (ET+B)	mm/month													
Cumulative storage	Ø	•	mm							\square						
	S	largest M	mm													
		$(X \times L)/1000$	2 ^m 3													

Monthly Water Balance used to Determine Wet Weather Storage for a Medium Rainfall Region with a Nominated Irrigation Area

.t.