On-site Wastewater Management Training Course

Evapotranspiration Systems and Sizing by Water Balance

Centre for Environmental Training

Terminology

Evapotranspiration Systems referred to as:

- Evapotranspiration Absorption Systems ETA Australia (unlined)
- Evapotranspiration Seepage Systems ETS New Zealand (unlined)
- · Or simply Evapotranspiration Systems ET, if lined

Centre for Environmental Training

Purpose

ETA/S Systems designed to:

- · Maximise evapotranspiration
- · Reduce absorption (drainage) in unlined systems
- · Avoid absorption in lined systems
- Provide alternative to conventional trenches/beds in areas of low permeability soils (<0.5-1.5 m/d) e.g. clay loams, light, medium and heavy clays

Centre for Environmental Training

AS/NZS 1547:2012

- Table L1 gives recommended DLRs of between 12 mm/d (CL) and 5 mm/d (LC/MC) based on soil texture
- Not necessary for annual evaporation to exceed annual precipitation
- Can use plant transpiration and void space storage to manage hydraulic load throughout seasons

Centre for Environmental Training

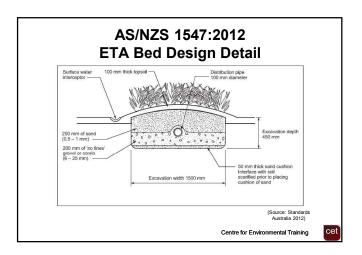
AS/NZS 1547:2012

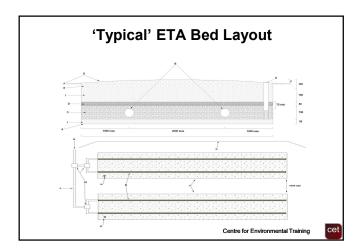
- · DLRs are conservative values
- Any variation to be justified by full water balance for 12-month cycle (Appendix Q)
- No higher DLRs for Secondary treated effluent (may be better to use conventional trench or bed)
- Plant with grasses and shrubs which tolerate wet conditions and have high evapotranspiration capacity
- · Construction outlined in Appendix L

Centre for Environmental Training

Water Balance Design

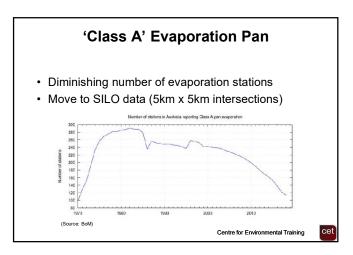
- Background outlined in Appendix Q in AS/NZS1547:2012
- · Main factors:
 - Effluent largely disposed of through deep infiltration, interflow and evapotranspiration
 - Evapotranspiration is significant but may not dominate water balance
 - Some deep infiltration is required to prevent salt build up
 - Not suited to shallow water tables unless using a lined system

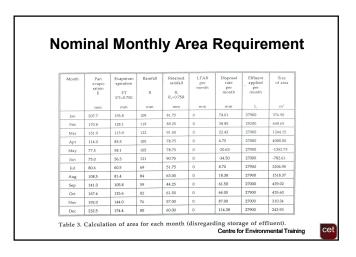


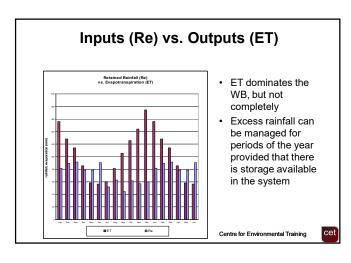

Important Components of ET Bed Design

- Crop Factors (Cf), Evaporation (E) and Evapotranspiration (ET) – explained further in water balance example later
- Capillary Water movement of water laterally and upwards under surface tension
- Field Capacity (FC) upper limit of available water storage in soil / medium
- Void Ratio (n) proportion of bed available for water/air storage

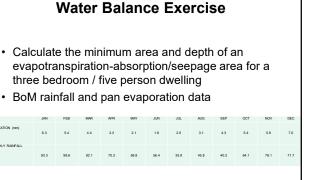
Centre for Environmental Training






Consideration of Climatic Data

- Pan evaporation (E)
 - From nearest climatically similar meteorological station
- Rainfall (R)
 - From nearest climatically similar meteorological station
- Or use SILO data:
- · https://www.longpaddock.qld.gov.au/silo/

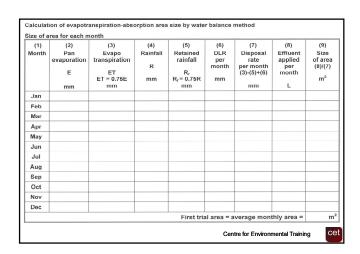


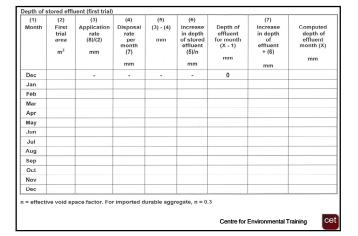
The Use of Water Balances • Will work through an example of an unlined ETA bed • Have provided templates for water balances for beds and also irrigation areas • Once you have practiced the skills required in doing water balances longhand they lend themselves to setting up spreadsheets to speed calculation

Water Balance Exercise

· Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes)

Centre for Environmental Training


Water Balance Exercise


- · Calculate the evapotranspirationabsorption/seepage area using the worksheets provided on the following pages
- The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 400 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 350 mm)
- Conventional beds may have between 300 mm and 600 mm of aggregate, ETA/ETS beds 400 mm of aggregate and sand

Centre for Environmental Training

Centre for Environmental Training

Conclusions and Discussion

- Can use water balances to size/check size of all land application areas
- Previous example of unlined bed
- Slight modification for lined bed or trench (LTAR/DLR = 0)
- · Similar water balance used for sizing irrigation areas but considers soil as an infinitely thin store (i.e. no soil storage) for conservative sizing

References

 Patterson RA, (2006). Evapotranspiration Bed Designs for Inland Areas. Septic Safe Technical Sheet Reference 05/15. NSW Department of Local Government, July 2006

