On-site Wastewater Management Training Course

Primary Treatment

Septic Systems

Centre for Environmental Training

cet

Septic Tank

- Is the most common type of domestic primary treatment system
- Use can be traced back to about 1860 in France and about 1900 in Australia
- · Current designs have changed little
- Septic systems and trenches provide the only form of wastewater treatment in many rural communities

Centre for Environmental Training

cet

Septic Tank

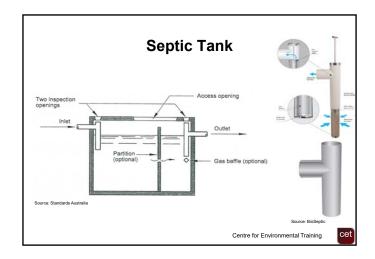
- Provides a quiescent environment in which wastewater can settle and clarify between a settled sludge layer (below) and a surface scum layer (above)
- · Accumulated sludge is periodically removed
- Clarified effluent passes downstream to land application or further treatment

Centre for Environmental Training

Septic Tank Design

- Watertight, durable concrete, glass fibre reinforced resin or plastic tank
- Cylindrical, with vertical or horizontal axis, or rectangular in shape
- May include partition/baffle divider to assist with hydraulic buffering and reduce carry-over of solids
- Inverted inlet and outlet fittings with adjacent inspection openings

Centre for Environmental Training

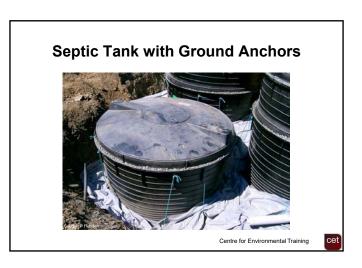

.

AS/NZS1546:1

Details of septic tanks are provided in AS/NZS1546:1 *On-site domestic wastewater treatment units Part 1: Septic tanks*, which covers:

- · Performance requirements and criteria
- · Design and fittings
- · Materials and testing

Centre for Environmental Training


Septic Tank Installation

- In ground with top of tank at or just above ground surface
- If installed below ground a watertight riser is fitted to support access and inspection covers
- May require ground anchors to prevent hydrostatic uplift

Centre for Environmental Training

Primary Treatment

A number of simple processes operate in a septic tank:

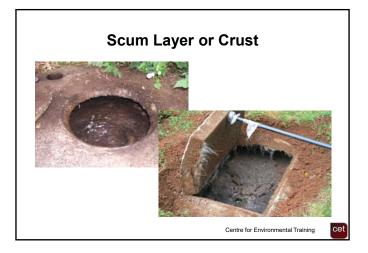
- · Sedimentation
- Flocculation
- Flotation
- · Anaerobic digestion
- Clarification

Centre for Environmental Training

cet

Sedimentation

- Achieved by density settling in quiescent conditions
- Aided by the flocculation of suspended particles into larger aggregates
- Removes > 60% of the suspended solids load
- Sludge or biosolids accumulates at base of tank


Centre for Environmental Training

Flotation

- Fats, oils, grease, surfactants and other low density materials rise to the surface and form a scum layer
- Scum retained in the tank by an inverted outlet pipe (tee) or baffle
- Scum layer precludes oxygen and creates anaerobic conditions which assists in the breakdown of organic solids

Centre for Environmental Training

Scum Layer or Crust Centre for Environmental Training

Anaerobic Digestion

- Organic material retained at the base of the tank undergoes microbiologically facilitated facultative and anaerobic decomposition
- Organic material is converted to stable compounds and gases such as carbon dioxide (CO₂), methane (CH₄) and hydrogen sulphide (H₂S)
- Retained sludge comprised mainly of lignous material that is difficult to decompose and will continue to accumulate

Centre for Environmental Training

Clarification

- Settled and skimmed wastewater retained within the central portion of the septic tank
- Re-suspension of settled solids is minimised under quiescent conditions
- Tanks are appropriately sized to allow for maximum solids settling
- Effluent is drawn from the clarified liquid between the sludge and scum layers and discharged for further treatment

Centre for Environmental Training

Septic Tank

Septic tank:

- Provides capacity for a minimum of 24 hours hydraulic residence time for daily flow
- Provides storage capacity for accumulated sludge
- · Prevents scum from moving downstream
- Starts microbiological degradation to reduce BOD₅, pathogens and settled solids

Centre for Environmental Training

ce

Septic Tank Capacity

All-waste septic tank capacities (AS/NZS1547:2012)

Persons	Bedrooms	Average daily flow (L)	Tank capacity
1 - 5	1-3	Up to 1,000L	3,000L
6 - 7	4	1,000 - 1,400L	3,500L
8	5	1,400 - 1,600L	4,000L
9 - 10	6	1,600 - 2,000L	4,500L

Centre for Environmental Training

Sludge Accumulation

- Sludge in a residential all-waste septic tank accumulates at approximately 80 L/person/year
- Pumpout interval is determined by tank capacity required for 24 hour residence time for daily load (varies from system to system)
- For example, a 3,000 L septic tank provides 24 hour residence time for 1,000 L daily load and 2,000 L sludge and scum capacity i.e. 5 persons x 80 L/person/year x 5 years

Centre for Environmental Training

Sludge Accumulation

Assess sludge and scum accumulation in a septic tank using either:

- · Sludge Judge
- · Sludge Depth Indicator
- Pressure sensor operated septic tank monitoring system

Centre for Environmental Training

Sludge Judge

Centre for Environmental Training

cet

Sludge Depth Indicator

Septic Tank Monitoring System

Comprises:

- · Control Panel and Modem
- · Tank Sensor
- · Apparatus Controller
- · Distribution Pit Sensors
- Flow Improvement Control System

cet

Septic Tank Effluent Quality

Parameter	Untreated domestic wastewater	Primary treated effluent
BOD ₅	200 - 300 mg/L	~ 150 mg/L
Suspended Solids	200 - 300 mg/L	~ 50 mg/L
Total Nitrogen	20 - 100 mg/L	50 - 60 mg/L
Total Phosphorus	10 - 25 mg/L	10 - 15 mg/L
Faecal Coliforms	10³ - 10¹º cfu/100mL	10 ⁵ - 10 ⁷ cfu/100mL

Centre for Environmental Training

cet

Primary Treatment

- Capable of removing approximately 25-35% of the BOD₅ load and greater than 60% of the suspended solids load in raw domestic wastewater
- Solids accumulate in the base of the primary tank and liquids are discharged for further treatment
- Floating material (scum) accumulates on the liquid surface and provides an air tight seal, creating anaerobic conditions

Centre for Environmental Training

cet

Outcomes

- · Moderate reduction in the TN load
- · Slight reduction in the TP load
- Limited pathogen removal
- · High bacterial counts remain in effluent
- Septic tank effluent not suitable for direct environmental discharge
- Further or Secondary treatment is necessary using soil based systems or aerobic processes (AWTS or sand filter etc.)

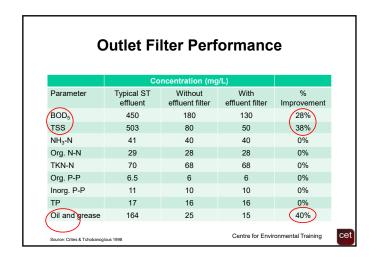
Centre for Environmental Training

Centre for Environmental Training

Improving Septic Tank Performance

- Simplest way to improve the performance of a standard septic tank is to fit or retrofit the outlet with an outlet filter
- Filters of various designs are commercially available and can reduce the impacts of solids carry over to the land application area or secondary treatment system
- Should prevent discharge of solids >3mm particle size and achieve TSS <100mg/L
- Filters have a large surface area to limit clogging and reduce maintenance requirements
- · However, they do require periodic inspection and cleaning

Centre for Environmental Training


CF

Septic Tank Outlet Filters

Centre for Environmental Training

Septic Tank Calculations

Question 1.

A new three bedroom house is supplied with reticulated water and has a 3,000L septic tank installed on construction. Assume that five people occupy the house.

(i)	Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
(ii)	Calculate the detention time of effluent in the septic tank at the outset.
(iii)	If sludge accumulates at the rate of 80L/person/year, calculate the amount of sludge that will accumulate in one year.
Que	stion 2.
three	lder three bedroom house is supplied with reticulated water and is occupied by e people. On inspection, it is determined that the septic tank is of 2,300L with city, but the tank is half full of sludge.
(i)	Calculate the daily hydraulic load based on a design hydraulic load of 150L/person/day.
(ii)	Calculate the annual sludge accumulation based on a sludge accumulation rate of 80L/person/year.
(iii)	A minimum of 24 hours detention must be maintained in the tank at all times. Calculate the length of time remaining before a pumpout will be required.

Septic Tank Calculations

ANSWERS

Question 1.

- (i) Daily hydraulic load = 5×150 L/person/day = 750L/day
- (ii) Septic tank volume = 3,000L

Daily hydraulic load = 750L/day

Detention time = 3,000L / 750L/day = 4 days

(iii) Occupancy = 5 persons

Sludge accumulation rate = 80L/person/year

Annual sludge accumulation = 5 persons x 80L/person/year = 400L/year

Question 2.

- (i) Daily hydraulic load = 3 x 150L/person/day = 450L/day
- (ii) Occupancy = 3 persons

Sludge accumulation rate = 80L/person/year

Annual sludge accumulation rate = 3 persons x 80L/person/year = 240L/year

(iii) Tank capacity = 2,300L

Daily hydraulic load = 450L

Volume of sludge in tank = 2,300L/2 = 1,150L

Volume available for further sludge accumulation = 1,150L - 450L = 700L

Sludge accumulation rate = 240L / year

Maximum time remaining prior to pumpout 700L / 240L/year = 2.9 years