SITE ASSESSMENT AND DESIGN EXERCISE

For this exercise we will work in small groups to complete a site assessment and design exercise for an on-site wastewater system.

Step One - Fieldwork

Use the **Soil Survey Sheet** and **Appendix 2** (following pages) to record details of your site and soil assessment.

Auger a hole and lay the soil out carefully to represent the soil profile. Excavate a soil pit adjacent to the auger hole and note how much more clear a picture you obtain of the soil profile by digging a soil pit.

Use the skills you have learned earlier to assess the soil texture by hand and feel for each horizon (layer) you can distinguish in the soil profile. Compile this information and the results of the other soils investigations listed on the table (Soil Survey Sheet).

(i) What is the 'texture and structure' of the most-limiting soil horizon or constraint in the identified effluent land application area (LAA)?

Remember: Minimum vertical separation to limiting condition is 0.5m (AS/NZS 1547:2012)

(ii) Would it be possible to mitigate the limiting condition identified? If so, how might you do that?

Step Two – Design Conditions

Assume that you are designing an OSSM system for a **three-bedroom** dwelling with reticulated water supply, which is to be constructed on the Site you have just investigated.

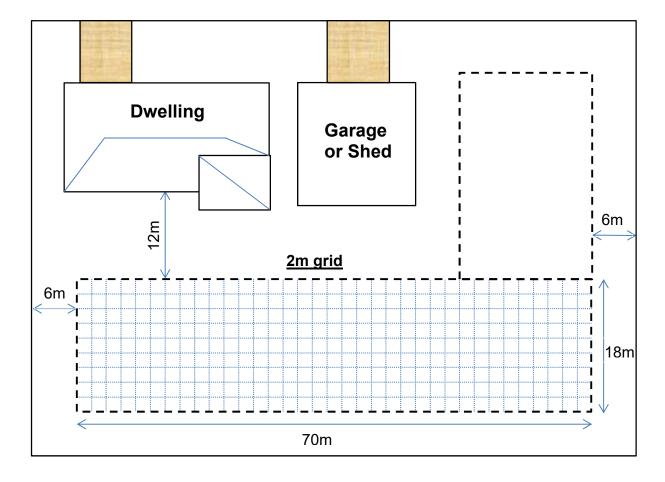
- (iii) What is the 'design occupancy' for the dwelling and on what basis have you made the determination?
- (iv) If the dwelling is to be <u>occupied by **five** people</u>, what is the 'design hydraulic load'?

TABLE H1

TYPICAL DOMESTIC WASTEWATER DESIGN FLOW ALLOWANCES – AUSTRALIA

Source	Typical wastewater design flows (L/person/day)							
Residential premises	On-site roof water tank supply	Reticulated water supply						
	120	150						
Source: Australian Bureau of St	atistics. Water Account 2004/2005. Chap	ter 7 Figure 7.3						

Step Three - Preliminary LAA Sizing

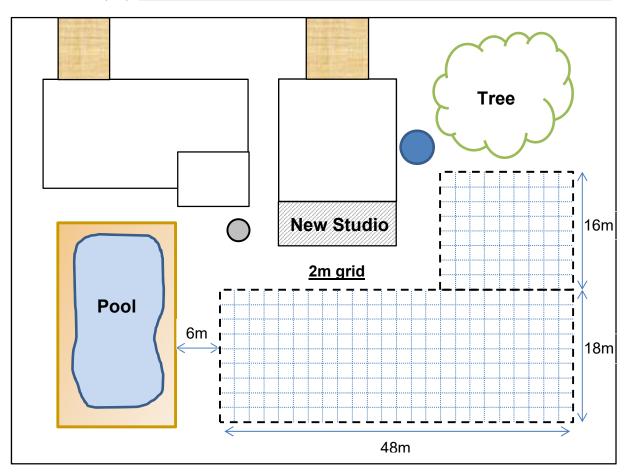

AS/NZS 1547:2012 supports a simple sizing methodology for effluent land application systems based on an 'areal loading' rate calculation.

$$A (m^2) = Q (L) / soil loading rate (DLR, DIR, BLR) (mm/day)$$

(v) To examine the relative land area requirements for a range of LAA systems, use the appropriate table from AS/NZS 1547:2012 (see following pages) to determine the applicable (soil) loading rate and minimum system area required, based on your recorded 'limiting' soil condition for each LAA type.

LAA System Type	Loading Rate (mm/day)	Minimum Size (m²)
Absorption Trench/bed		
ETA bed		
Mound		
Irrigation area		

(vi) On the example Site Plan (below), sketch out how each LAA configuration might be arranged for this example Site.


Step Four - Final Design Solution

(vii) Discuss amongst your group and decide upon the 'most suitable' OSSM system for the Site you have assessed today.

Treatment System: (Primary / Secondary), Why?
LAA System type:
, ,, <u> </u>
Applicable Soil Loading Rate: (mm/day)
Mitigation proposed: (What/Why?)

(viii) Prepare a case to justify your system selection and determine the appropriate sizing and arrangement for your system on the following development site.

LAA required (m²):

Each group will have an opportunity to present their design and will be expected to explain / rationalise how they have reached their conclusions.

TABLE L1
RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Design loading rate (DLR) (mm/d)						
Soil	Soil		Indicative	Tre						
category	texture	Structure	permeability (K _{sat}){m/d)	Primary treat	ted effluent	Secondary	ETA/ETS beds and			
			v saliviii oj	Conservative rate	Maximum rate	treated effluent	trenches			
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)				
2	Sandy	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)				
	l louine	Massive	1.4 – 3.0	15	25	50	(see			
2	Loame	High/ moderate structured		15	25	50	Note 4)			
3 Loams		Weakly structured or massive	0.5 - 1.5	10	15	30				
		High/ moderate structured	0.5 – 1.5	10	15	30	12			
4	Clay loams	Weakly structured	0.12 - 0.5	6	10	20	8			
		Massive	0.06 - 0.12	4	5	10	5			
		Strongly structured	0.12 - 0.5	5	8	12	8			
5	Light clays	Moderately structured	0.06 ~ 0.12		5	10				
		Weakly structured or massive	< 0.06			8	_			
		Strongly structured	0.06 - 0.5				5 (see Notes 2, 3, & 5)			
5	Medium to heavy clays	Moderately structured	< 0.06	(see Notes 2 &)	2, 3, α 3)			
		Weakly structured or massive	< 0.06							

NOTES:

- The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.
- 3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).
- 4 ETA/ETS systems are not normally used on soil Categories 1 to 3.
- 5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE M1
RECOMMENDED DESIGN IRRIGATION RATE (DIR) FOR IRRIGATION SYSTEMS

				Design irrigation rate (DIR) (mm/day)					
Soil Category (see Note 1)	Soil texture	Structure	Indicative permeability (K _{sat}) (m/d)	Drip irrigation	Spray irrigation	LPED irrigation			
1	Gravels and sands	Structureless (massive)	> 3.0	5	5	(see Note 3)			
2	Sandy	Weakly structured	> 3.0	(see Note 2)	5	4			
	loams	massive	1.4 – 3.0			4			
3	Loams	High/ moderate structured	1.5 – 3.0	4	4	3,5			
3	Loans	Weakly structured or massive	0.5 – 1.5	(see Note 1)	4	3.5			
_	Clay loams	High/ moderate structured	0.5 - 1.5	3.5					
4		Weakly structured	0.12 - 0.5	(see Note 1)	3.5	3			
		Massive	0.06 - 0.12						
		Strongly structured	0.12 – 0.5						
5	Light clays	Moderately structured	0.06 - 0.12	3 (see Note 1)	3	2.5 (see Note 4)			
		Weakly structured or massive	< 0.06						
	NA - elli-	Strongly structured	0.06 - 0.5						
6	Medium to heavy	avy Moderately < 0.06		2 (see Note 2)	2	(see Note 3)			
	clays	Weakly structured or massive	< 0.06						

NOTES:

- 1 For Category 3 to 5 soils (loams to light clays), the drip irrigation system needs to be installed in an adequate depth of topsoil (in the order of 150 250 mm of *in situ* or imported good quality topsoil) to slow the soakage and assist with nutrient reduction.
- 2 For Category 1, 2, and 6 soils, the drip irrigation system has a depth of 100 150 mm in good quality topsoil (see CM1 and M3.1).
- 3 LPED irrigation is not advised for Category 1 or Category 6 soils drip irrigation of secondary effluent is the preferred irrigation method.
- 4 LPED irrigation for Category 5 soils needs a minimum depth of 250 mm of good quality topsoil (see M5 and CM7.1).

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE N1
RECOMMENDED MOUND DESIGN LOADING RATES

Soil Category	Soil texture	Structure	Indicative permeability (K _{sat})(m/d)	Design loading rate (DLR) (mm/d)
1	Gravels and sands	Structureless (massive)	> 3.0	32
2	Sandy language	Weakly structured	> 3.0	24
	Sandy loams	Massive	1.4 - 3.0	24
3	Loomo	High/moderate structured	1.5 – 3.0	24
3	Loams	Weakly structured or massive	0.5 – 1.5	16
		High/ moderate structured	0.5 – 1.5	16
4	Clay loams	Weakly structured	0.12 – 0.5	8
		Massive	0.06 - 0.12	5 (see Note)
		Strongly structured	0.12 - 0.5	8
5	Light clays	Moderately structured	0.06 - 0.12	
		Weakly structured or massive	< 0.06	
		Strongly structured	0.06 – 0.5	5 (see Note)
6	Medium to heavy clays	Moderately structured	< 0.06	
	Clays	Weakly structured or massive	< 0.06	

NOTE: To enable use of such soils for on-site wastewater land application, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soits having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

(Source: AS/NZS 1547:2012 Standards Australia)

SOIL SURVEY SHEET

Lands	scape (de	escription		301	LSCK	VEI S		e No			
Geolo	gy				,	Surface	drainag	ge			
Veget	ation					Internal	drainag	ge			
Aspec	t				•	Ground	water				
Slope	(%)										
Buffer	r distanc	es (all di	stan	1ces	s in met	res, up	slope oi	r downs	lope)		
Sketch	n house o	on the lot		Sur	face wa	ter stor	age	Ground	lwater	bore or	well
				Otł	ner build	lings		Swimm	ning po	ool	
					perty bo	oundary	7 -	Propert down s	•	ndary -	
Profile	e Descri	ption (s	secti	ion	number	s refer t	o Chapt	er 7 note	es)		
Soil horizon 6.2.1	depth (mm) from to	boundary type 6.2.3	field texture	6.2.4	structure -shape, grade, size 6.2.5	pH (units) Exercise 3	EC (dS/m) Exercise 2	dominant colour - moist 6.2.6	mottles 6.2.7	dispersion Exercise 1	coarse fragments 6.2.15
top											
second											
third											

Recorder Date

ppendix 2

APPENDIX 2

MODEL SITE REPORT

1 SITE EVALUATORS	
Company	Name(s)
Address	
ph:	fax:
Date of assessment: / / Sig	nature of evaluator: / /

2 SITE INFORMATION	
Address/locality of site	Council area
Owner/developer:	ph:
Address:	
Size/shape/layout Site plans attached	vaslas
Photograph attached	yes/no
Intended water supply	rainwater reticulated water supply bore/groundwater
Expected wastewater quantity (litres/day)	
Local experience (information attached regarding on-site sewage management systems installed in the locality)	yes/no

If any site or soil features have not been assessed, note why.

3	SITE ASSESSMENT	
Clima	ite	
	Are low temperatures expected (particularly below 15°C)?	yes/no
Wher	e appropriate:	
	Rainfall water balance attached	yes/no
	Land application area calculation attached	yes/no
	Wet weather storage area calculation attached	yes/no
Flood	potential	
	Land application area above 1 in 20 year flood level	yes/no
	Land application area above 1 in 100 year flood level	yes/no
Evnos	Electrical components above 1 in 100 year flood level	yes/no
Expos	ure	
Slope		
Landf	orm	
Run-c	on and seepage	
Erosic	on potential	
Site d	rainage	
Fill		
Groui	ndwater	
	Horizontal distance to groundwater well used for domestic	
	Relevant groundwater vulnerability map referred to?	yes/no/not available
	Level of protection (I – VI)	
	Bores in the area and their purpose:	
Buffer	distances from wastewater	
Mana	gement system to:	
	Permanent waters (m)	
	Other waters (m)	
	Other sensitive environments (m)	
	Boundary of premises (m)	
	Swimming pools (m)	
	Buildings (m)	
Is the	re sufficient land area available for:	
	Application system (including buffer distances)	yes/no
	Reserve application system (including buffer distances)	yes/no
Surfac	ce rocks	

SOIL ASSESSMENT

Depth to bedrock or hardpan (m)

5	SYSTEM SELECTION	
Consi	deration of connection to a centralised sewerage system Approximate distance to nearest feasible connection point: Potential for future connection to centralised sewerage Potential for future connection to reticulated water	high/med/low high/med low/already connected
Туре	of land application system considered best suited to site:	
Why?		
Туре	of treatment system considered best suited to site and applic	ation system:
Why?		
6.	GENERAL COMMENTS	
Are th	nere any specific environmental constraints?	
Are th	nere any specific health constraints?	
Anv c	other comments?	

Calculation of evapotranspiration-absorption area size by water balance method

Size of area for each month

(6) (8)	Effluent Size applied of area (8)/(7)		Г													Ilv area = m ²
(7)	Disposal rate per month	(3)-(2)+(6)	mm					8								First trial area = average monthly area
(9)	DLR per month	mm														area II a
(5)	Retained rainfall	$R_r = 0.75R$	mm													Firet tria
(4)	Rainfall R	шш														
(3)	Evapo transpiration	ET = 0.75E	m m													
(2)	Pan evaporation	ш	mm													
(1)	Month			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	

n = effective void space factor. For imported durable aggregate, n = 0.3