On-site Wastewater Management Training Course

Evapotranspiration Systems and Sizing by Water Balance

Centre for Environmental Training

AS/NZS 1547:2012

Evapotranspiration Systems referred to as:

- Evapotranspiration Absorption Systems ETA Australia (unlined)
- Evapotranspiration Seepage Systems ETS New Zealand (unlined)
- · Or simply Evapotranspiration Systems if lined

Centre for Environmental Training

cet

Purpose

ETA/S Systems designed to:

- · Maximise evapotranspiration
- · Reduce absorption (drainage) in unlined systems
- · Avoid absorption in lined systems
- Provide alternative to conventional trenches/beds in areas of low permeability soils (<0.5-1.5 m/d) e.g. clay loams, light, medium and heavy clays

Centre for Environmental Training

AS/NZS 1547:2012

- Table L1 gives recommended DLRs of between 12 mm/d (CL) and 5 mm/d (LC/MC) based on soil texture
- Not necessary for annual evaporation to exceed annual precipitation
- Can use plant transpiration and void space storage to manage hydraulic load throughout seasons

Centre for Environmental Training

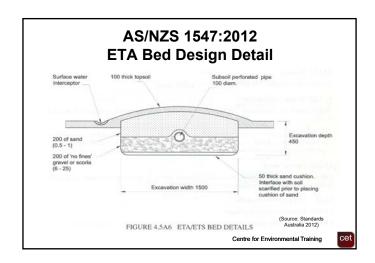
се

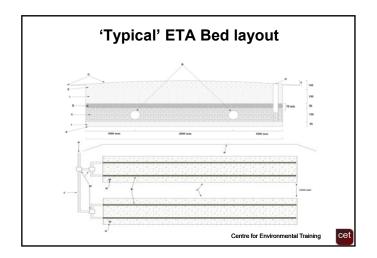
AS/NZS 1547:2012

- · DLRs are conservative values
- Variations to be justified with full 12-month water balance (Appendix Q)
- Plant with grasses and shrubs which tolerate wet conditions and have high evapotranspiration capacity
- · Construction outlined in Appendix L

Centre for Environmental Training

Water Balance Design

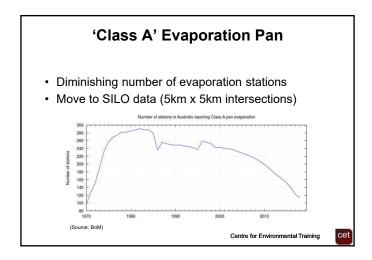

- Approach outlined in Appendix Q in AS/NZS1547:2012
- · Main factors:
 - Effluent largely disposed of through deep infiltration, interflow and evapotranspiration
 - Evapotranspiration is significant but may not dominate water balance
 - Some deep infiltration is required to prevent salt build up
 - Not suited to shallow water tables unless using a lined system


Centre for Environmental Training

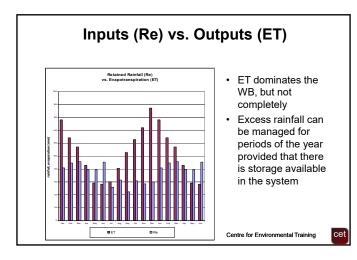
Important Components of ET bed design

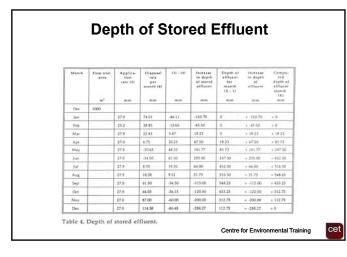
- Crop Factors (Cf), Evaporation (E) and Evapotranspiration (ET) – explained further in water balance example later
- Capillary Water movement of water laterally and upwards under surface tension
- Field Capacity (FC) upper limit of available water storage in soil / medium
- Void Ratio (n) proportion of bed available for water/air storage

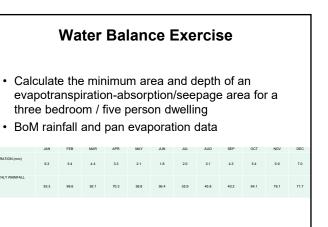
Centre for Environmental Training



Consideration of Climatic Data


- Pan evaporation (E)
 - From nearest climatically similar meteorological station
- Rainfall (R)
 - From nearest climatically similar meteorological station
- · Or use SILO data


Centre for Environmental Training



The Use of Water Balances • Will work through an example of an unlined ETA bed • Have provided templates for water balances for beds and also irrigation areas • Once you have practiced the skills required in doing water balances longhand they lend themselves to setting up spreadsheets to speed calculation

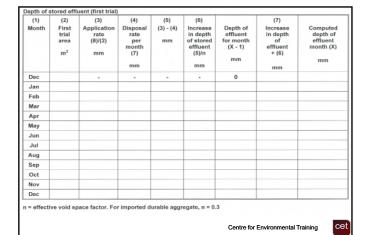
Water Balance Exercise

 Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Centre for Environmental Training

cet

Water Balance Exercise


- Calculate the evapotranspirationabsorption/seepage area using the worksheets provided on the following two pages.
- The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 550 mm).

Centre for Environmental Training

Centre for Environmental Training

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Month	Pan evaporation E mm	Evapo transpiration ET ET = 0.75E mm	Rainfall R mm	Retained rainfall R _r R _r = 0.75R mm	DLR per month mm	Disposal rate per month (3)-(5)+(6) mm	Effluent applied per month	Size of area (8)/(7) m ²
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
				First tria	al area = a	verage mont	hlv area =	n

Conclusions and Discussion

- Can use water balances to size/check size of all land application areas
- · Previous example of unlined bed
- Slight modification for lined bed or trench (LTAR/DLR = 0) (pages 13.5-13.6)
- Similar water balance used for sizing irrigation areas but considers soil as an infinitely thin store for conservative sizing (pages 13.10-13.11)

Centre for Environmental Training

cet

References

 Patterson RA, (2006). Evapotranspiration Bed Designs for Inland Areas. Septic Safe Technical Sheet Reference 05/15. NSW Department of Local Government, July 2006.

Centre for Environmental Training

		T		Т			-	Т			Т	Т	т	
Size of area		ш,	376.90	648.65	1244.15	4000.00	-1352.73	-782.61	3206.90	1518.37	439.02	435.60	310.34	243.93
Effluent applied per	month	J	27900	25200	27900	27000	27900	27000	27900	27900	27000	27900	27000	27900
Disposal rate per	month	mm	74.01	38.85	22.43	6.75	-20.63	-34.50	8.70	18.38	61.50	64.05	87.00	114.38
LTAR per month	0.0000000000000000000000000000000000000	шш	0	0	0	0	0	0	0	0	0	0	0	0
Retained rainfall	R,=0.75R	шш	81.75	89.25	91.50	78.75	78.75	90.75	51.75	63.00	44.25	61.50	57.00	00.09
Rainfall	ĸ	mm	109	119	122	105	105	121	69	84	59	82	92	80
Evapotran -spiration	ET=0.75E	mm	155.8	128.1	113.9	85.5	58.1	56.3	60.5	81.4	105.8	125.6	144.0	174.4
Pan evapo-	Ш	шш	207.7	170.8	151.9	114.0	77.5	75.0	80.6	108.5	141.0	167.4	192.0	232.5
Month			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Table 3. Calculation of area for each month (disregarding storage of effluent).

														,
Computed depth of effluent month	шш		0 =	0 =	= 18.23	= 85.73	= 247.50	= 452.50	= 516.50	= 548.23	= 433.23	= 312.73	= 112.73	0 =
Increase in depth of effluent	шш		+ -153.70	+ -45.50	+ 18.23	+ 67.50	+ 161.77	+ 205.00	+ 64.00	+ 31.73	+ -115.00	+ -120.50	+ -200.00	+ -288.27
Depth of effluent for month (X - 1)	mm		, 0	0	0	18.23	85.73	247.50	452.50	516.50	548.23	433.23	312.73	112.73
Indepth of stored effluent	mm		-153.70	45.50	18.23	67.50	161.77	205.00	64.00	31.73	-115.00	-120.50	-200.00	-288.27
(3) - (4)	шш		46.11	-13.65	5.47	20.25	48.53	61.50	19.20	9.52	-34.50	-36.15	-60.00	-86.48
Disposal rate per month (4)	шш		74.01	38.85	22.43	6.75	-20.63	-34.50	8.70	18.38	61.50	64.05	87.00	114.38
Applica- tion rate (3)	шш		27.9	25.2	27.9	27.0	27.9	27.0	27.9	27.9	27.0	27.9	27.0	27.9
First trial area	a,	1000							T.	•				
Month		Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Table 4. Depth of stored effluent.

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption/seepage area size by the water balance method.

Using the following information using your Course Notes, calculate the minimum area and depth of an evapotranspiration-absorption/seepage area for a three bedroom / five person dwelling.

Bureau of Meteorology rainfall and pan evaporation data for the nearest station is provided below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	6.3	5.4	4.4	3.3	2.1	1.8	2.0	3.1	4.3	5.4	5.9	7.0
MEAN MONTHLY RAINFALL (mm)	93.3	99.6	92.1	70.3	58.8	56.4	35.9	45.8	40.2	64.1	76.1	71.7

Three test pits excavated on the proposed disposal area indicate that the soils are 475 mm weakly structured clay loam overlying moderately structured light clay to a depth of 2000 mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Calculate the evapotranspiration-absorption/seepage area using the worksheets provided on the following two pages.

The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600 mm with a minimum of 50 mm freeboard (i.e. maximum depth of stored effluent is 550 mm).

Calculation of evapotranspiration-absorption area size by water balance method

Size of area for each month

(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)
a	Pan	Evapo franspiration	Rainfall	Retained	DLR	Disposal	Effluent	Size
			22	3	_	per month	per	(8)/(2)
	Ш	ET		ፚ፟		(3)-(5)+(6)	month	
		ET = 0.75E	mm	$R_{\rm r} = 0.75R$	mm			m^2
- 1	mm	mm		mm		mm	_	
				First tria	Il area = a	First trial area = average monthly area =	hly area =	m ²
Ш								

		Depth of Increase C	for month of	(X - 1)	mm	mm	0 -												
	(5)	(3) - (4) In in	mm of	Φ			-												
	(4)	Disposal rate				mm	1												
Depth of stored effluent (first trial)	(3)	Application rate	(8)/(2)	mm			1												
stored efflu	(2)	First trial	area	m ²															
Depth of s	(1)	Month					Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3

Minimum Area Method Water Balance and Wet Weather Storage Calculations

Design Wastewater Flow	9	L/day													
Design Percolation Rate	(F)	mm/wk													
				,	,	;		;	,	,		\perp	+	+	E
Farameter	Symbol	Formula	Chifs	,	4	M	¥	M	,	,	¥	s	0	9	Lotal
Days in month	(D)	•	days												
Precipitation	<u>@</u>		mm/month												
Evaporation	(E)		mm/momfu												
Crop factor	(2)	•	,	Н	П	П	Н	Н	Н		Н	Н	Н	Н	
Outputs															
Evapotranspiration	(ET)	ExC	mm/momfu												
Percolation	<u>@</u>	(R/7) x D	mm/month									\vdash			
Outputs		(ET+B)	mm/momfu												
Inputs															
Precipitation	(F)	•	mm/momfu												
Possible Effluent Irrigation	(W)	(ET + B) -P	quom/mm												
Actual Effluent Production	Œ	H/12	mm/momfu												
Inputs		(P + I)	mm/momfm	Ħ	П	Ħ	Н	Ħ	Ħ	Н	H	Н	H	Н	Н
Storage	(8)	(P+I) - (ET+B)	mm/mom/mm	+	\top	\top	+	+	+	+	+	+	+	_	_
Cumulative storage	(M)		mm	\forall	П	П	\Box	Ħ	\forall		H	H	H	H	
IrrigationArea	Œ	365 x Q/H	"m	T											
Storage	છ	largest M	mm												

А 0 Monthly Water Balance used to Determine Wet Weather Storage for a Medium Rainfall Region with a Nominated Irrigation Area S V Z V Z mm/month mm/month mm/month mm/month mm/month mm/month mm/month mm/month Units days (R/7) x D (ET+B) ((x D)/L Formula ExC L/day mm/wk (P+W) Ħ, Symbol EI) 9 Θ 8 9 \exists e e æ Design Wastewater Flow Design Percolation Rate Land Area Evapotranspiration Effluent Irrigation Days in month Precipitation Precipitation Evaporation Crop factor Parameter Percolation Outputs Outputs Inputs Inputs

Total

40.4

mm/month

(P+W) - (ET+B)

Z

Cumulative storage

Storage

8

H

m Fm

largest M (V x L)/1000

3

Storage