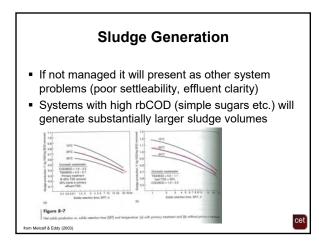


Troubleshooting Suspended Growth Processes

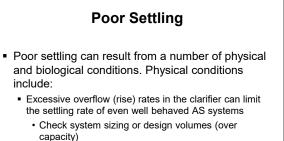
- Activated sludge processes are most common:
 Extended Aeration plants, SBR's, Oxidation Channels, IDEA plants, Hybrid Plants, BNR plants
- Remember, any activated sludge process is a biological process and any corrective action may take several days to weeks to show results (good or bad)
- While the following presents a review of common problems, do not exclude the possibility of a toxic event or other conditions not considered here

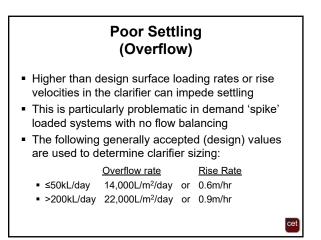
Suspended Growth Processes Common Problems

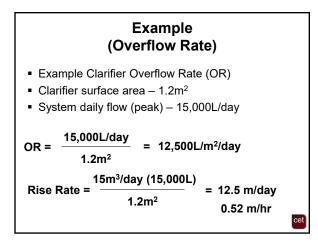

- Carryover of solids or high effluent turbidity
 - Return Activated Sludge (RAS) systems (pickup/skimmer) may be disabled or the <u>rate of return</u> may be too low
 - <u>Poor settling</u> in the clarification chamber may be resulting from sludge bulking or problematic <u>foam</u> generation
 - Over or under <u>aeration</u> can result in poor settling and gas buildup in solids (anaerobic digestion / denitrification)
 - The retained solids level in the system may be too high (WAS) and pump out required

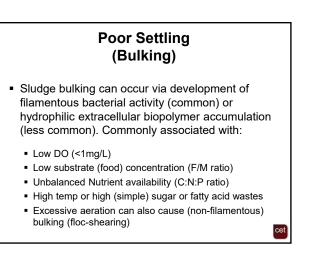
Sludge Return Ratio

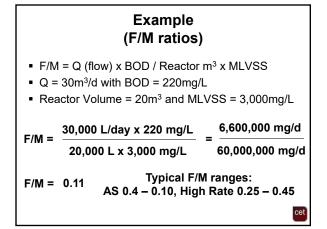
- MLSS concentration maintained in reactor vessel to maximise biological metabolism of organic wastes
- Recycling rate dependent on system characteristics (typically 50%-75% design flow)
- Target MLVSS concentration <u>2,000 to 5,000</u> mg/L for:
 - Extended Aeration
 - Oxidation Channel
 - SBR / IDEA
- Some systems may operate at significantly higher MLSS

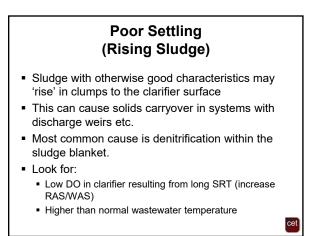

- Sludge generation a function of organic loading (BOD/COD), solids retention time (SRT), reactor temperature (°C) and influent quality (raw or primary)
- Typical yield (kg.Cell / kg.COD) 0.3-0.5 (primary) and 0.5-0.7 (raw)
- Sludge inventory will continue to increase in reactor at a rate controlled by process efficiency (high – logarithmic, low – endogenous)


Sludge Generation (Example)


- If a PTP treats 30,000L of raw wastewater per day
- Average COD concentration of 360mg/L
- Daily load of COD = 30,000L x 360mg/L = 10,800,000mg or 10.8kg
- With a sludge yield ratio of 0.6
- Daily sludge production = 10.8kg x 0.6 (kg.Cell / kg.COD) = 6.48kg
- If the reactor has a volume of 60kL and a MLSS concentration of 2,000mg/L, a wasting rate of <u>~6%</u>
 <u>per day</u> is required just to maintain equilibrium






 Identify other sources of agitation within secondary clarifiers that may hinder settling performance (uncontrolled/excessive air delivery, water sprays, deflections from fittings / equipment or wildlife??)

cei

Poor Settling (Settleability Test)

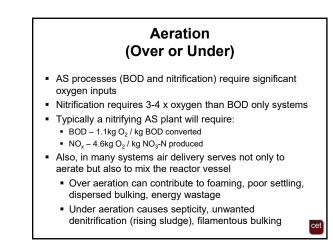
- The Sludge Volume Index (SVI) is an empirical test used to examine the settling characteristics of MLSS
- The SVI is reported as the volume of 1 gram of MLSS after 30 minutes of settling
 The test takes the form of :
 - SVI = <u>settled volume of sludge (mL/L) x 1000</u> = mL/g mixed liquor suspended solids (mg/L)
- Although arguably flawed, the test is useful for comparing treatment system performance
- An SVI of <100 is considered good-settling, above 150 we look for bulking/foaming causes

Example (Settleability Test)

- Example Sludge Volume Index (SVI)
- SVI = $\frac{100 \text{mL/L} \times 1000}{2,000 \text{ mg/L}} = \frac{100,000}{2,000} = 50 \text{mL/g}$
- Multiplying the top line of the equation by 1,000 converts milligrams to grams on the bottom of the equation

cet

Reactor Foaming


- Foaming can result from a number of factors and is typically more of a nuisance than a performance problem
 - Excessive foaming can be the direct result of detergent inputs from influent wastewater
 - Educate system owners on appropriate detergent usage
 Low F/M can also promote the growth of particular
 - filamentous micro-organisms (principally Nocardia) that froth in the aerobic reactor vessel and clarifier
 - Water sprays can be successful in knocking down foams
 In problematic situations a dilute chlorine spray can be directly applied to the foams to knock them over

Aeration (Over or Under)

- In aerobic (AS) reactors we should be aiming for reliable DO concentration of 2-3mg/L for good BOD/nitrification performance
- Not just volume of air, but efficiency of delivery
- Typical 'Actual Oxygen Transfer Efficiency" (AOTE) values BOD only systems – 4-6% (coarse bubble) to 8-12% (fine bubble)
 - Nitrifying systems 4-8% (coarse bubble) to 8-14% (fine bubble)
- So, how much air do we need to deliver the appropriate amount of oxygen for the system processes we are trying to facilitate?

How much Air?	
BOD only for 100 EP system	
 BOD generation rate (g/EP/day) = EP (equivalent population) = BOD loading to plant (kg/day) = Oxygen required (kg.O₂/kg.BOD) = Oxygen required (kg/day) = 	45 100 4.5 (4,500g) 1.1 <u>4.95</u>
 Air Density (kg/m³ @ 20°C) = O₂ per m³ of air (23.18%) (kg) = 	1.2 0.278
 O₂ transfer efficiency – AOTE (%) = Air Requirement (m³/day) = 	8 (fine) 222 (155Lpm) cet

How much Air?

BOD and nitrification for 100 EP system

- BOD loading to plant (kg/day) = 4.5
- NH₃ loading to plant (kg/day) = 0.9
- Oxygen required (kg.O₂/kg.BOD) = 1.1 4.6
- Oxygen required (kg.O₂/kg.NO₃) =
- Oxygen required (combined) (kg/day) = 9.09
- O₂ transfer efficiency AOTE (%) = 8 408
- Air Requirement (m³/day) =

Other Common Problems

Odours

cet

(285Lpm)

- Incomplete nitrification ammonia smell (check for 'blue' tinge to reactor/clarifier water colour
- In combination with dark-coloured and turbid effluent it may suggest under aeration or poor mixing (dead zones)
- Excessive sludge buildup may be occurring increase wasting rate (WAS)
- Poor housekeeping check for other odour generating substances (dead animals) or areas of stagnant water

Other Common Problems

- Poor Effluent Quality
 - Particularly in relation to higher the expected BOD and TSS
 - Check air delivery systems or aeration timings
 - Low DO may be contributing to poor performance
 - Check sludge wasting regime to ensure microorganisms in MLSS remain at higher end of growth curve
 - Check system pH to ensure optimal growth conditions toxic shock loading

Troubleshooting Attached Growth Processes

- Attached growth systems such as:
 - Biological filters, RBC's, and other fixed or floating media reactors
- Subject to a range of operational problems as with all biological systems
- Specific problems relate to media or substrate properties, while others are a consequence of external conditions

Attached Growth Processes Common Problems

Ponding

- Primarily in down flow biological filters
- Clogging of the filter bed due to poor media selection (permeability) or excessive biofilm growth (high organic loading?)
- Accumulation of debris on filter surface (leaves etc.)
- Hydraulic overloading or undersized filter bed design
- Localised infestation of insects (snails) or vermin
- Freezing (less common)

cet

Attached Growth Processes Common Problems

- Odours
 - Excessive organic loading to filter bed
 - Poor oxygen (air) transfer to media or substrate surfaces (remember aerobic processes)
 - Excessive biofilm development causing bridging of voids and dead zones in filter

Attached Growth Processes Common Problems

- Carryover of solids or high effluent turbidity
 - Poor primary treatment (check septic tank)
 - Excessive organic loading to treatment system
 - Poor oxygen transfer to media and substrate
 - Excessive biofilm sloughing due to:
 - die-offexcessive rotational velocity or hydraulic loading
 - toxic shocks
 - temperature problems (influent and atmospheric)

cet

