

Design of Subsurface Systems for Wastewater Disposal Depends on: • <u>Hydraulic capacity of soil</u> - limiting design

- <u>Hydraulic capacity of soil</u> limiting design parameter (LDP) for soils of low hydraulic conductivity
- Purification ability of soil not easily assessed
- Hydraulic load application rate of wastewater
- A simple set of design criteria which adequately considers all of the above factors does not exist

Centre for Environmental Training

Methods to Assess Hydraulic Capacity of Soils • Determine soil hydraulic capacity using either: - field measurement in-situ permeability - laboratory measurement, or - field textural method

- Design according to relevant Code or Standard and size system using design hydraulic load need to undertake SSE procedure on-site
- Calculate required contact area and lineal metres of trenching for soil absorption based on soil hydraulic capacity and daily hydraulic load

Soil Porosity

- · Portion of soil occupied by air and water
- · Determined by arrangement of solid particles
- · Sand has large pore spaces between the particles, but few compared to silt or clay
- · Soil pores are fine spaces in soil between particles contain part solid matter, water and air

COllesive water	
hesive water	air cell soil particle
Unconsolidated	%
Deposits	
Gravel	25-50
Sand	25-50
Silt	35-50
Clay	40-70
Rocks	
Sandstone	5-30
Limestone	5-50
Shale	0-10
Dense Crystalline	0-5 cet

Soil Permeability – Hydraulic Conductivity

- · The ability of a soil to transmit or conduct water (equated with hydraulic conductivity K) under unit hydraulic potential
- Use of a constant head rather than a falling head
- Measured in-situ or in laboratory under standard conditions
- Not possible to precisely correlate percolation (determined by a "perc" test) and permeability

In-situ Measurement of **Permeability**

- Field measurement requires measurement at a number of sites
- Measured in field using constant head (Talsma-Hallam, Guelph, disc, Cromer) permeameter
- Recommended procedure Appendix G AS/NZS1547:2012 (Talsma-Hallam constant head test)

Texture	Structure	Permeability m/day
Coarse sand, Gravel	Single grain (none)	More than 12
Medium Sand	Single grain (none)	6 - 12
Loamy Sand, fine Sand	Medium crumb, singe grain	3 - 6
Fine Sandy Loam, Sandy Loam	Coarse blocky, granular, fine crumb	1.5 – 3
ight Clay Loam, Silt Loam, very ine Sandy Loam, Loam	Prismatic, angular blocky	0.5 – 1.5
Clay, Silty Clay, Clay Loam, Sandy Clay Loam	Fine to medium Prismatic, angular blocky	0.1 – 0.5
Clay, Silty Clay, Clay Loam, Sandy Clay Loam	Very fine prismatic, angular blocky	0.05 – 0.1
Clay, heavy Clay	Massive, very fine or columnar	< 0.05

Field Textural Method Using Soil Morphology

- · Examine soil structure in soil pit important for soil drainage
- Examine soil texture in pit important indicator of drainage

- · Determine relative proportions of silt, sand clay fractions based on moistened bolus Used to assess soil hydraulic
- capacity

Laboratory Textural Method **Using Soil Morphology**

- Determine relative proportions of silt, sand, clay fractions based on laboratory sieving
- · Relate texture/structure characteristics from field and laboratory work to indicative clean water permeability using established test data
- · Used to assess soil hydraulic capacity

Centre for Environmental Training

Soil Categories and In K _{sat} (clean wate	ndicative er)
Textural Classification/Typical Permeability	K _{sat} (m/d)
Gravels and sands	> 3.0
Sandy Loams	1.4 - 3.0
Loams	0.5 - 1.5
Clay Loams	0.06 - 1.5
Light Clays	< 0.06 - 0.5
Med to Heavy Clays	< 0.06
 Choice of representative values may depend evaluation 	on site and soil
Coarser grained soils have higher K _{sat} than f	ine grained
 Some fine grained soils can have higher K_{sat} cracking 	due to structure i.e.
Cen	tre for Environmental Training

Soil Categories and Design DLR for Trenches and Beds

Adapted from Table 5.2 AS/NZS1547:2012

Soil Category	Soil Texture	Structure Range of categories not shown	Indicative K (m/d)	Primary Conserv. DLR (mm/d)	Primary Max. DLR (mm/d)
1	Gravels & sands	Massive	> 3.0	See note	See note
2	Sandy loams	Range	1.4 - 3.0	15	25
3	Loams	Range	0.5 - 3.0	10	25
4	Clay loams	Range	0.06 – 1.5	4	15
5	Light clays	Range	0.06 - 0.5	5	8
6	Heavy clays	Range	< 0.06 - 0.5	See note	See note
			Centre f	or Environmental	Training Cet

		Minimum Land Application Area Required (m2) ¹	
Soil category ¹	Soil texture	Primary Treatment ²	Secondary Treatment ³
1	Gravels and sands	0.377	0.2
2	Sandy loams	0.377	0.2
3	Loams	0.477	0.25
4	Clay loams	0.689	0.286
5	Light clays	1.284	0.333
6	Medium to heavy clays	1.284 *	0.5

Summary

- Trenches and beds utilising soil absorption still provide an effective means of land application and treatment of effluent
- Site and soil assessment is very important in designing these systems – needs to be undertaken by persons trained in site and soil evaluation and system design
- Soils can provide excellent renovation capacity when loaded at an appropriate rate
- Trenches and beds are inappropriate in heavy soils without modification
- Concern also with regard to very sandy soils and groundwater protection

Centre for Environmental Training