SITE ASSESSMENT AND DESIGN EXERCISE

For this exercise we will work in small groups to complete a site assessment and design exercise for an on-site wastewater system.

Step One - Fieldwork

Use the **Soil Survey Sheet** and **Appendix 2** (below) to record details of your site and soil assessment.

Auger a hole and lay the soil out carefully to represent a soil profile. Excavate a soil pit adjacent to the auger hole and note how much more clear a picture you obtain of the soil profile by digging a soil pit.

Use the skills you have learned earlier to assess the soil texture by hand and feel for each horizon (layer) you can distinguish in the soil profile. Compile this information and the results of the other soils investigations listed on the table (Appendix 2).

(i) What is the **'texture and structure'** of the limiting soil horizon or constraint in the identified effluent land application area (LAA)?

Remember: Minimum vertical separation to limiting condition is 0.5m (AS/NZS 1547:2012)

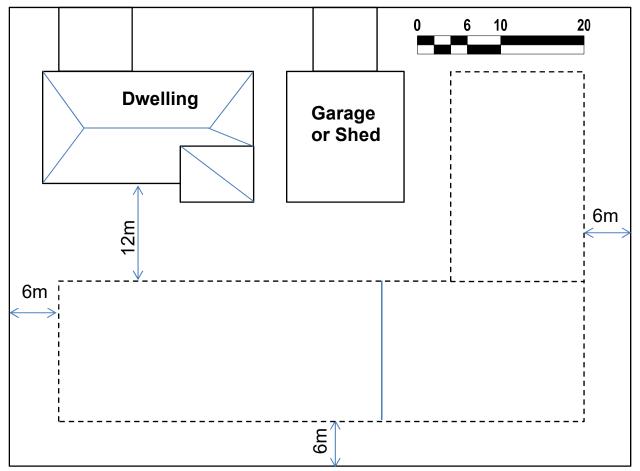
(ii) Is it possible to mitigate the limiting condition identified? How might you do that?

Step Two – Design Conditions

Assume that you are designing an OSSM system for a **three-bedroom** dwelling with reticulated water supply, to be **occupied by five people**, which is to be constructed on the Site you have just investigated.

(iii) What is the 'design occupancy' and 'design hydraulic load' for the dwelling?

Source	Typical wastewater design flows (L/person/day)			
Residential premises	On-site roof water tank supply	Reticulated water supply		
	120	150		


Step Three – Preliminary LAA Sizing

AS/NZS 1547:2012 supports a simple sizing methodology for effluent land application systems based on an '**areal loading**' rate calculation.

(iv) To give you an idea of the relative land area requirements for a range of LAA systems, use the appropriate table from AS/NZS 1547:2012 (provided on following pages) to determine the correct (soil) loading rate and minimum system area required.

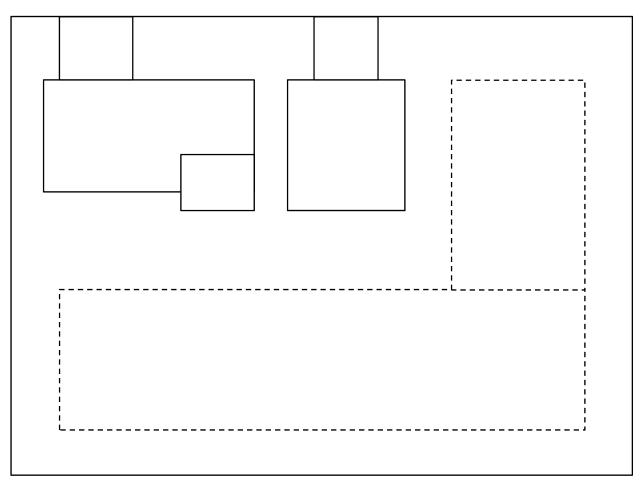
LAA System Type	Loading Rate (mm/day)	Minimum Size (m ²)
Trench/bed		
ETA		
Mound		
Irrigation area		

(v) On the example Site Plan (below), sketch out how each LAA configuration might be arranged for your Site.

Step Four – Final Design Solution

(vi) Discuss amongst your group and decide upon the '**most suitable**' on-site system for the Site we have visited.

Treatment System: (Primary / Secondary) Why? _____


LAA System: _____

Applicable Soil Loading Rate: (mm/day)

Mitigation proposed: (What/Why?)

(vii) Prepare a case to justify your system selection and determine the appropriate sizing for your system.

LAA required (m²): _____

Each group will have an opportunity to present their design and will be expected to rationalise how they have reached their conclusions.

TABLE L1 RECOMMENDED DESIGN LOADING RATES FOR TRENCHES AND BEDS

				Desi	ign loading ra	te (DLR) (mm/	d)
Soil Soil		Indicative		Trenches and beds			ETA/ETS
category texture		permeability (K _{sat})(m/d)	Primary treat	ted effluent	Secondary	beds and	
			(Sapt)	Conservative rate	Maximum rate	treated effluent	trenches
1	Gravels and sands	Structureless (massive)	> 3.0	20 (see Note 1)	35 (see Note 1)	50 (see Note 1)	
2	Sandy Ioams	Weakly structured	> 3.0	20 (see Note 1)	30 (see Note 1)	50 (see Note 1)	
		Massive	1.4 - 3.0	15	25	50	(see
3	Loams	High/ moderate structured	1.5 - 3.0	15	25	50	Note 4)
5	Luains	Weakly structured or massive	0.5 - 1.5	10	15	30	
		High/ moderate structured	0.5 - 1.5	10	15	30	12
4	Clay loams	Weakiy structured	0.12 - 0.5	6	10	20	8
		Massive	0.06 - 0.12	4	5	10	5
		Strongly structured	0.12 – 0.5	5	8	12	8
5	Light clays	Moderately structured	0.06 - 0.12		5	10	
		Weakly structured or massive	< 0.06			8	-
		Strongly structured	0.06 - 0.5			5 (see Notes 2, 3, & 5)	
6	Medium to heavy clays	Moderately structured	< 0.06			2, τ, α τη	
		Weakly structured or massive	< 0.06				

NOTES:

- 1 The treatment capacity of the soil and not the hydraulic capacity of the soil or the growth of the clogging layer govern the effluent loading rate in Category 1 and weakly structured Category 2 soils. Land application systems in these soils require design by a suitably qualified and experienced person, and distribution techniques to help achieve even distribution of effluent over the full design surface (see L6.2 and Figure L4 for recommended discharge method by discharge control trench). These soils have low nutrient retention capacities, often allowing accession of nutrients to groundwater.
- 2 To enable use of such soils for on-site wastewater land application systems, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.
- 3 If K_{sat} < 0.06 m/d, a full water balance for the land application can be used to calculate trench/bed size (see Appendix Q).
- 4 ETA/ETS systems are not normally used on soil Categories 1 to 3.
- 5 For Category 6 soils ETA/ETS systems are suitable only for use with secondary treated effluent.

TABLE M1 RECOMMENDED DESIGN IRRIGATION RATE (DIR) FOR IRRIGATION SYSTEMS

				Design irriga	ation rate ([DIR) (mm/day)
Soil Category (see Note 1)	Soil texture	Structure	Indicative permeability (K _{sat}) (m/d)	Drip irrigation	Spray irrigation	LPED irrigation
1	Gravels and sands	Structureless (massive)	> 3.0	5	5	(see Note 3)
2	Sandy	Weakly structured	> 3.0	(see Note 2)	Ð	4
۲	loams	massive	1.4 – 3.0			-
3	Loomo	High/ moderate structured	1. 5 – 3.0	4	4	25
5	Loams	Weakly structured or massive	0.5 – 1.5	(see Note 1)	4	3.5
_		High/ moderate structured	0.5 - 1.5	3.5	0.5	
4	Clay loams	Weakly structured	0.12 - 0.5	(see Note 1)	3.5	3
		Massive	0.06 - 0.12] .		
		Strongly structured	0.12 – 0.5			
5	Light clays	Moderately structured	0.06 - 0.12	3 (see Note 1)	3	2.5 (see Note 4)
		Weakly structured or massive	< 0.06			
		Strongly structured	0.06 - 0.5			
6	to heavy	Medium to heavy structured	< 0.06	2 (see Note 2)	2) 2	(see Note 3)
	clays	Weakly structured or massive	tructured < 0.06			

NOTES:

1 For Category 3 to 5 soils (loams to light clays), the drip irrigation system needs to be installed in an adequate depth of topsoil (in the order of 150 – 250 mm of *in situ* or imported good quality topsoil) to slow the soakage and assist with nutrient reduction.

2 For Category 1, 2, and 6 soils, the drip irrigation system has a depth of 100 – 150 mm in good quality topsoil (see CM1 and M3.1).

3 LPED irrigation is not advised for Category 1 or Category 6 soils – drip irrigation of secondary effluent is the preferred irrigation method.

4 LPED irrigation for Category 5 soils needs a minimum depth of 250 mm of good quality topsoil (see M5 and CM7.1).

(Source: AS/NZS 1547:2012 Standards Australia)

TABLE N1 RECOMMENDED MOUND DESIGN LOADING RATES

Soil Category	Soil texture	Structure	Indicative permeability (K _{sat})(m/d)	Design loading rate (DLR) (mm/d)
1	Gravels and sands	Structureless (massive)	> 3.0	32
	A	Weakly structured	> 3.0	24
2	Sandy loams	Massive	1.4 – 3.0	24
<u>^</u>	• • • • • • • • • • • • • • • • • • •	High/ moderate structured	1.5 – 3.0	24
3	Loams	Weakly structured or massive	0.5 – 1.5	16
		High/ moderate structured	0.5 – 1.5	16
4 Clay loams	Weakly structured	0.12 – 0.5	8	
		Massive	0.06 - 0.12	5 (see Note)
		Strongly structured	0.12 – 0.5	8
5	Light clays	Moderately structured	0.06 - 0.12	
		Weakly structured or massive	< 0.06	
		Strongly structured	0.06 – 0.5	5 (see Note)
6	Medium to heavy	Moderately structured	< 0.06	
	clays	Weakly structured or massive	< 0.06	

NOTE: To enable use of such soils for on-site wastewater land application, special design requirements and distribution techniques or soil modification procedures will be necessary. For any system designed for these soils, the effluent absorption rate shall be based upon soil permeability testing. Specialist soils advice and special design techniques will be required for clay dominated soils having dispersive (sodic) or shrink/swell behaviour. Such soils shall be treated as Category 6 soils. In most situations, the design will need to rely on more processes than just absorption by the soil.

(Source: AS/NZS 1547:2012 Standards Australia)

Landscape (description)	Site No
Geology	Surface drainage
Vegetation	Internal drainage
Aspect	Groundwater
Slope (%)	

SOIL SURVEY SHEET

Buffer distances (all distances in metres, upslope or downslope)

Sketch house on the lot	Surface water storage	Groundwater bore or well
	Other buildings	Swimming pool
	Property boundary - upslope	Property boundary - down slope

Profile Description (section numbers refer to Chapter 7 notes)

third	second	top	Soil horizon 6.2.1
			depth (mm) from to
			boundary type 6.2.3
			field texture 6.2.4
			structure -shape, grade, size 6.2.5
			pH (units) Exercise 3
			EC (dS/m) Exercise 2
			dominant colour - moist 6.2.6
			mottles 6.2.7
			dispersion Exercise 1
			coarse fragments 6.2.15

Recorder Date

APPENDIX 2 MODEL SITE REPORT

1 SITE EVALUATORS		
Company	Name(s)	
Address		
ph:	fax:	
Date of assessment: /	/ Signature of evaluator: /	/

2 SITE INFORMATION	
Address/locality of site	Council area
Owner/developer:	ph:
Address:	
Size/shape/layout Site plans attached	
Photograph attached	yes/no
Intended water supply	rainwater reticulated water supply bore/groundwater
Expected wastewater quantity (litres/day)	
Local experience (information attached regarding on-site sewage management systems installed in the locality)	yes/no

If any site or soil features have not been assessed, note why.

3 SITE ASSESSMENT	
Climate	
Are low temperatures expected (particularly below 15°C)	? yes/no
Where appropriate:	
Rainfall water balance attached	yes/no
Land application area calculation attached	yes/no
Wet weather storage area calculation attached	yes/no
Flood potential	
Land application area above 1 in 20 year flood level	yes/no
Land application area above 1 in 100 year flood level	yes/no
Electrical components above 1 in 100 year flood level	yes/no
Exposure	
Slope	
Landform	
Run-on and seepage	
Erosion potential	
Site drainage	
Fill	
Groundwater	
Horizontal distance to groundwater well used for domest	ic water supply (m)
Relevant groundwater vulnerability map referred to?	yes/no/not available
Level of protection (I – VI)	
Bores in the area and their purpose:	
Buffer distances from wastewater	
Management system to:	
Permanent waters (m)	
Other waters (m)	
Other sensitive environments (m)	
Boundary of premises (m)	
Swimming pools (m)	
Buildings (m)	
Is there sufficient land area available for:	Vicalaa
Application autom (including buffer distance)	
Application system (including buffer distances) Reserve application system (including buffer distances)	yes/no yes/no

4	SOIL	ASSESSM	ENT
•			

Depth to bedrock or hardpan (m)

Depth to high soil watertable (m)

Hydraulic loading rate (where applicable)

Soil structure:

Soil texture:

Permeability category:

Other measures of soil permeability:

Hydraulic loading recommended for soil absorption system (mm/day):

Reasons for the hydraulic loading recommendation:

Coarse fragments (%)

Bulk density (and texture) (g/cm³)

рΗ

Electrical conductivity (dS/m)

Exchangeable sodium percentage

Cation exchange capacity (cmol⁺/kg)

Phosphorus sorption index

Geology & soil landscape survey Presence of discontinuities Presence of fractured subsoil Soil and Landscape map reference:

Dispersiveness

5 SYSTEM SELECTION

Consideration of connection to a centralised sewerage system Approximate distance to nearest feasible connection point: Potential for future connection to centralised sewerage Potential for future connection to reticulated water

high/med/low high/med low/already connected

Type of land application system considered best suited to site:

Why?

Type of treatment system considered best suited to site and application system:

Why?

6. GENERAL COMMENTS

Are there any specific environmental constraints?

Are there any specific health constraints?

Any other comments?

Calculation of evapotranspiration-absorption area size by water balance method

month
each
for
area
of
Size

(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
Month	Pan	Evapo	Rainfall	Retained	DLR	Disposal		Size
	evaporation	transpiration	ſ	rainfall	per	rate		of area
	L	ĘŢ	Y	۵	month		per month	(1)/(2)
	4					(0)-(c)-(c)		6
		ET = 0.75E	mm	$R_{r} = 0.75R$	mm			т²
	mm	mm		mm		mm		
Jan								
Feb								
Mar								
Apr								
May								
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
1				First tria	al area = a	First trial area = average monthly area =	:hly area =	m ²

	Depth of :	stored efflu	Depth of stored effluent (first trial)						
First Application Disposal (3) - (4) Increase Depth of Increase trial rate mm (3) - (4) in depth of offluent in depth marea (8)/(2) per mm of stored for month (5)/in (7.1) effluent (7.1) m mm mm mm mm mm mm mm h(6) h(7) h(6) m mm mm mm mm mm mm mm h(6) h(7) h(6) h(7) h(7) h(6) h(7)	(1)	(2)	(3)	(4)	(5)	(9)		(2)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Month	First trial	Application rate	Disposal rate	(3) - (4)	Increase in depth	Depth of effluent	Increase in depth	Computed depth of
		area m²	(8)/(2) mm	per month (7)	E	or storea effluent (5)/n	TOT MONTH (X - 1)	or effluent + (6)	erriuent month (X)
				mm		mm	шш	mm	mm
Jan Feb Image: Comparison of the comparis	Dec			1			0		
Feb Nat Mar Ma Mar Ppr Apr Ppr Jun Ppr Ppr Ppr Ppr Ppr	Jan								
Mar Mar Mai Mai <th>Feb</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Feb								
Apr May May May Jun Jun Jul Jun Jun	Mar								
May Jun Jun Jun Jun Jun	Apr								
Jun Jul	May								
Jul Aug Aug Sep Oct Nov No Dec No	Jun								
Aug Sep Aug Nov N N N Nov N N N Dec N N N	Jul								
Sep Nov Nov No N N N N N N N N N N N N N N N N N N	Aug								No.
Oct Oct Nov I I I	Sep								
Nov	Oct								
Dec	Nov								
	Dec								

n = effective void space factor. For imported durable aggregate, n = 0.3