

Alternative Terminology

ATUs are alternatively known as:

- Aerated wastewater treatment systems Aerated septic tanks
- Home aeration plants
- · Household package plants, or
- Treatment plants
- Sometimes the word "aerobic" is used in place of the word "aerated"

Aerated Wastewater Treatment Units

- Adopt treatment process utilised in larger wastewater treatment plants
- · Design attempts to replicate these
- Larger wastewater treatment plants more frequently monitored and adjusted

Centre for Environmental Training

- ATUs infrequently serviced (quarterly)
- ATUs performance commonly variable
- Challenging to operate

AS/NZS 1546.3:2008

Australian/New Zealand Standard AS/NZS 1546.3:2008 On-site domestic wastewater treatment units, Part 3: Aerated wastewater treatment systems (Standards Australia 2008) covers:

Centre for Environmental Training

- Performance criteria
- · Design requirements
- Minimum marking requirements

Variety of Systems Variety of Systems • Wide range of commercial ATU designs Wide variety of configurations and and configurations processes Large number of Australian and overseas · Understanding of basic processes is manufacturers important · Some brands and models discontinued, • Some key similarities due to compliance with the Standard AS/NZS1546:3 others modified and/or are no longer accredited by the various State government Most systems are 1 or 2 tank attached agencies growth systems, with some exceptions Centre for Environmental Training Centre for Environmental Training

AWU Configurations

Modular design

Biological Treatment Processes

Anaerobic Processes:

- Digestion
- Contact

Aerobic Processes: – Suspended Growth

– Attached Growth

Primary Treatment

- Can be in a separate septic tank or a chamber within a single tank system
- Minimum of 24 hours detention time to maximise settling and moderate peak flows
- Physical, chemical and biological processes:
 - Sedimentation of solids
 - Flotation (scum layer)Clarification
 - Clarification
 Anaerobic degradation of organic material (BOD₅)

Centre for Environmental Training

Sedimentation / Flotation

- · Achieved by density settling in quiescent tank
- Surge flows should be avoided
- · Aided by flocculation
- Sludge accumulates at base of tank or chamber
- · Periodically requires pumpout
- · Scum layer or crust forms at surface
- · Forms air tight seal, creates anaerobic conditions
- · Prevents escape of gases, reduces odours

Centre for Environmental Training

Solids (Sludge) Management

- Processes described previously all produce waste solids (grit, screenings, scum, solids and biological material) commonly referred as sludge
- The quantity of sludge produced depends on the load and treatment processes
- Sludge generally removed from domestic ATUs by suction tanker and disposed of to licensed facility (STP)

Anaerobic Degradation

- Anaerobic processes occur in the absence of free (molecular) oxygen
- Scum provides seal to reduce oxygen (air) transfer
- Organic material retained at the base of the tank undergoes facultative and anaerobic decomposition (microbiologically facilitated)
- Three steps hydrolysis, acidogenesis and methanogenesis

<section-header><section-header>

- Sludge may be returned from the aeration and/or clarification chamber to the primary chamber
- Useful for addressing high-strength wastes or toxic loads
- · Also assists with de-nitrification
- Avoid disturbing scum by returning to inlet tee

Centre for Environmental Training

- Aerobic treatment processes occur in the presence of free (molecular) oxygen
- Primarily facilitated by bacterial metabolism and the conversion of suspended and dissolved organic materials to energy, biomass and wastes
- Efficient process for the removal of:
 Carbonaceous Organic Matter (BOD and TOC),
 Nutrients (N & P), and for

Centre for Environmental Training

• Waste (sludge) stabilisation

Attached Growth Processes Fixed or Floating Media (FM) systems Trickling Filter (TE) systems]

- [Trickling Filter (TF) systems]
- [Rotating Biological Contactor (RBC) systems]
- Systems typically utilise a high surface area media (mineral or synthetic) or discs or drum to support the growth of a biological film (biofilm)

Centre for Environmental Training

(Aerobic) Attached Growth

- Attached or 'fixed-film' treatment processes used to remove fine or dissolved organic matter from wastewater
- Facilitated growth of a microbiological film (biofilm) on a fixed or mobile substrate that is either actively or passively aerated
- Commonly encountered process configurations include:
 - Submerged attached-growth
 - Non (or partially) submerged attached-growth
 - Hybrid suspended and attached-growth Centre for Environmental Training

Microbial 'Biofilm' Growth

- Microorganisms attached to inert media
- Plastic tubes, plastic sheets
- Plastic cells (large surface area / unit volume)

(Aerobic) Attached Growth Wastewater in the treatment reactor contacts with the biofilm Biofilm microorganisms consume or convert organic material and other constituents as part of their metabolic processes Aerobic process requires a positive dissolved or atmospheric oxygen concentration Biofilm consists of aerobic and facultative bacteria, fungi, algae and protozoans Worms, larvae and snails may also be present in non-submerged systems

(Aerobic) Attached Growth

- Systems require careful consideration of media hydraulics (including biofilm) and organic loading rates
- Process typically requires primary sedimentation to remove coarse solids and avoid clogging
- Treated mixture requires secondary settlement (clarification) to remove sloughed biofilms and residual solids from the waste stream
- Sludge may be proportionally returned (RAS) to the treatment reactor in submerged and hybrid systems

Centre for Environmental Training

Food is brought to microbes

ood is brought to microbes

Attached Growth Floating Media

- Typically a hybrid of suspended / attached growth processes
- Consist of a chamber with a fixedsubmerged or free floating media

Attached Growth	Media Type	
Bioseptic Performa	Fixed	
Earthsafe ES10PC	Fixed	
Envirocycle 10NR	Fixed	
Aqua-nova 10EP	Fixed	
Aqua-nova NR	Fixed	
Fuji clean model CE1200	Floating and Fixed	
Fuji clean model CRX1500	Floating and Fixed	
Fuji clean model CE 1500 EX	Floating and Fixed	
Ultra clear model Ultra10	Fixed	
Ultra clear model ST8	Fixed	
Ultra clear model ST10	Fixed	
Turbojet 2000	Fixed	
Krystel Kleer Model ADV5000	Fixed	
Biocycle model BIO7000	Fixed	
Gardenmaster GM7100	Fixed	
Econocycle ENC 10-1	Fixed	
Econocycle ENC 10-2	Fixed	
Econocycle ENP 10-2	Fixed	
Supertreat SE 10	Fixed	
Supertreat SB 10	Fixed	
Taylex compact	Fixed	
Taylex ABS	Fixed	

(Aerobic) Suspended Growth

- Activated Sludge is the principal aerobic suspended growth process used in ATUs
- Involves blending raw or primary treated wastewater with a retained population of wastewater-consuming microorganisms in suspension within a treatment reactor (Mixed Liquor)
- Wastewater is fed into the reactor and biological populations consume or convert organic material and other constituents as part of their metabolic processes
- Process requires a positive dissolved oxygen (DO) concentration
 Centre for Environmental Training

(Aerobic) Suspended Growth

- Treated mixture requires secondary settlement (clarification) to remove flocculent microorganisms from the waste stream
- A proportion is returned to the aerobic reactor (Return Activated Sludge)
- There have been a large number of adaptations to the basic process to address issues such as:

Centre for Environmental Training

Centre for Environmental Training

- Nutrient Removal
- Small flows
- Intermittent or low-strength flows
- Operational simplicity

Suspended Growth Performance

Process performance can be limited by multiple (environmental or chemical) factors:

- Temperature cold (slow) warm (fast) metabolism
- pH 6.0-9.0 prefer limited variation (6.5-7.5)
- Alkalinity for nitrification (min 50-100 mg/L as CaCO₃)
- Available oxygen (DO) 2mg/L to 3mg/L + mixing
- Essential nutrients CNP ratio (100:10:1)
- Inhibiting substances

Suspended Growth 'Activated Sludge'

- Blends raw or primary treated wastewater with a retained population of microbes within suspension in an aerobic reactor (Mixed Liquor)
- · Food mixed with microbes
- Microorganisms retained in suspension by mechanical mixing or aeration (blowers)
- Sludge return from clarification chamber maintains high microorganism population in aeration chamber
- SBR / IDEA: Proportion of activated sludge retained in tank after decanting Centre for Environmental Training

- Provides settling of aerobically treated
 effluent
- Facilitates solids settling by providing quiescent conditions
- May utilise a funnel (Imhoff) design to concentrate settled sludge and minimise resuspension
- In smaller systems, WAS is typically directed to the primary chamber
- Skimmer for floatable flocs and debris

ATU Treatment Summary

- Treatment efficiency is highly dependent on even and constant hydraulic and organic loads
- Domestic wastewater is highly variable in quantity and quality (short and long term)
- ATUs are sensitive to biocides (e.g. bleaches, disinfectants, antibiotics)
- ATUs can remove up to 90% ${\rm BOD}_5$ and TSS but less effective at removal of thermotolerant coliforms
- ATUs do not significantly reduce N or P without careful management and design modifications

Centre for Environmental Training

Performance objectives (90th percentile)
Biochemical oxygen demand - 20 mg/L
Total suspended solids (TSS) - 30 mg/L
Chlorination (if applied) - thermotolerant bacteria - median <10 cfu/100 mL - total chlorine > 0.2 - 2.0 mg/L

cet