Package Treatment Plant Operation and Management

Reviewing and Approving **System Applications**

Joe Whitehead

Introduction

In this session we will cover:

- Applications for approval of packaged wastewater treatment plants:
 - What information is required (by regulators)?
 - What information should be provided (by designers/proponents)?
 - What to look out for?
 - What to check?
 - How to check it?

Background

- Uncertainty over which guidelines to use in NSW
- Variable approach from one Council to another
- Legacy of the handover from EPA to Councils
- Limited experience with package plants in many Councils
- Wide variety of systems and treatment methods
- Many old systems that are performing poorly
- Applications for approval for new systems ongoing and likely to increase in number, especially retirement villages, van parks, campgrounds etc. and wineries/distilleries
- Need sound approach to application assessment

Background

Variety of facilities/institutions using package treatment plants:

- Very large houses with multiple bedrooms
- Mobile home villages / Caravan parks / Camps /
- National Park campgrounds
- Retirement villages / Nursing homes
- Hotel and Motels
- Resorts / Conference centres / Wedding venues
- Wineries / Distilleries
- **Breweries**

- Road houses
- Service centres Schools
- Church facilities /
- Meeting rooms
- Restaurants / Cafes Registered Clubs /
- **Bowling Clubs** Golf clubs / Sports
- facilities
- Industrial sites / Mines
 - Military facilities

Background

- Wide variation in loads:
 - From one plant to another, and
 - · From time to time in any one plant
- Temporal variation (diurnal / seasonal)
- Schools / campsites / racecourses / restaurants Unusual loads
- Boutique cheese factory / Delicatessen / Distilleries
- Complex loads
 - Combined operations e.g. Winery, resort and conference centre
- Difficult loads
 - Hospital / aged care facilities / drug and alcohol rehabilitation centres / food factories / industrial sites/ retirement villages / mobile home parks with elderly / aging population

What information is required to assist the approvals process?

Need a comprehensive list of information to ensure:

- Suitability of package treatment plant chosen
- Correct sizing of system
- Adequate operation and maintenance program
- Appropriate selection of land application system or discharge option
- Appropriate location of land application system
- Appropriate sizing of land application system

Information sought from proponent

- A detailed list of information to be sought from a proponent to assist with the assessment of a development application for a small package sewage treatment plant follows these notes
- The list includes:
 - Information sought categories of information and a broad description
 - Specific details
 - Rationale or reason for seeking information
- The list should be amended or refined as necessary to cover the specific needs of the site

Information sought from proponent

Information sought:

- Project description
- Site plans
- Drainage and stormwater management plans
- Flow and load assessment
- Expected wastewater quality
- System selection
- Treatment process description

Information sought from proponent

Information sought (continued):

- Staged development plan
 - Drawings
 - Estimated load for land application or discharge
 - Expected treated wastewater quality
 - Disinfection (means, testing/monitoring)
 - Land application or disposal system selection
 - Land application system sizing

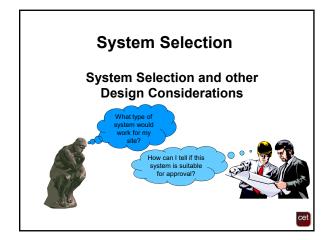
Determine Performance Requirements

- As laid down in guidelines / Standards
- Need flow and quality data in support of application (all non-domestic systems should have flow meters)
- Estimate land area availability and ensure sufficient space is available
- Consider odour control requirements in relation to proximity to receptors
- Consider likely noise levels in relation to OH&S and planning requirements
- Outline site assessment information required

Assess Pollutant Load

- Initial desk study to collate information on load generating population, flows and quality of wastewater
 - Estimate resident population
 - Number of employees and visitors
 - Estimate water consumption
 - Multiply population figures by appropriate per capita values for:
 - Hydraulic load
 - Organic load
 - Nutrient load

Problems with design flows and loads


- It is often difficult to obtain reliable flow and quality data, especially for small populations
- Major design issues to consider to avoid hydraulic and organic overloading and odour problems are:
 - Wastewater flow exceeding plant design through groundwater infiltration
 - Daily organic load above plant design due to seasonal influx of visitors

Problems with design flows and loads

- Hydraulic shock loads on steep sites with short sewers or oversized pumps
- Large and rapid changes in wastewater temperature arising from trade flows
- Build up of grease and fat in treatment plant due to inadequate upstream removal (pre-treatment / lack of grease arrestor)
- Build up of solids in pump wells
- High proportion of commercial wastewater where insufficient allowance has been made to compensate for inhibition of biological treatment

System Selection

- There are a variety of techniques and tools available for selection of viable/suitable/acceptable treatment technologies for decentralised wastewater treatment systems, these range from:
 - Intensive/Complex Triple Bottom Line, Net Present Value, Life Cycle Analysis and Integrated Water Cycle Management etc.
 - Rational/Semi-Quantitative Expected System Performance, Site/System Requirements and Cost-Benefit Analysis
 - Informed/Qualitative Vendor Bidding/Selling, Past Experience or Regulatory Prescription

Rational System Selection

- The application of a Rational/Semi-Quantitative approach for system selection is a good "first pass" test for potential owners and managers of PTP technologies
 - Responds to regulatory limits (effluent quality) and conditions (system/environmental requirements)
 - Considers system/site limitations or constraints
 - Identifies range of appropriate alternatives
 - Matches system selection to an acceptable solution

Rational System Selection

- Not a fixed approach
- Framework may be adjusted to suit system/site peculiarities
- While targeted at new installations, framework may also be used to examine/assess suitability of existing systems, or for consideration of system upgrades or expansion
- Typically, we would suggest the following fivestep approach

Rational System Selection Step 1 - Consultation

- Discuss system requirements with planning authority / environmental regulator
 - Planning Constraints (noise, odour, sensitive areas etc.)
 - System sizing (flow estimates, wastewater characteristics and variations)
 - Performance limits for both plant and re-use / effluent management systems (effluent quality)
 - Other requirements (water re-use, development staging)
 - Maintenance, Monitoring and Reporting

Rational System Selection Step 2 - Site Assessment

- Identify site characteristics and potential interactions with the built and natural environment
 - Site Constraints (available land area, site levels, landform and soils, sensitive receptors, access and construction issues, power supply, site drainage/stormwater)
 - Existing / Required building elements (integration with current development, other land uses)
 - Opportunities (onsite re-use, landscape irrigation, agriculture etc.)

Rational System Selection Step 3 - Development Assessment

- Identify development characteristics
 - Wastewater Generation (flow volumes, rates and variability, wastewater quality or characteristics)
 - Water Balance (water demand/supply, climate characteristics, irrigation potential and loading rates, storage requirements)
 - Opportunities (internal reuse, fire fighting water, ornamental)
 - Development (build-out, staging, future expansion?)
 - Resourcing (staff skill level, availability, external support)

Rational System Selection Step 4 - Options Assessment

- Identify suitable treatment technologies using:
 - Tables comparing typical system performance, or
 - Other published sources
 - Sourced manufacturer/supplier information
- Confirm (general) option acceptability with regulatory agency staff
- Confirm with system manufacturers or suppliers that system options can meet performance limits (seek operational performance data for similar settings)
- Discuss potential problems/limitations with development staff and/or contractors

Rational System Selection Step 5 - Cost-Benefit

- Following short-listing of possible treatment options use a cost-benefit approach to optimise system selection for a given site
- Considerations may include:
 - Capital and ongoing operational costs
 - System robustness / complexity / flexibility
 - Performance reliability
 - Specific effluent quality criteria (e.g. lowest N possible)
 - Manufacturer/Supplier support or warranty
 - Compatibility with downstream effluent reuse option

System Performance Tables

- The following table illustrates typical performance expectations (effluent quality and sizing suitability information) a particular treatment technology
- Can be drawn up for all system types and can be used as a general guide to expected performance
- Many systems are designed for specific performance outcomes
- Where possible, manufacturers information should be used to confirm system loading and effluent quality data

Extended Aeration Plants

	Expected Effluent Quality				
BOD ₅ (mg/L)	10	10	20	20	30
TSS (mg/L)	10	20	30	30	40
TN (mg/L)	<5	5	10	>10	-
FC (cfu/100mL)	<5	5-10	>10		
Operational Scale					
1 - 50 EP					
51-200 EP					
200-1000 EP					
1000-2500 EP					

System Performance

- Critical to have performance data for any plant
- For existing plants helps understand performance, identify areas for improvement and rectification
- For proposed plants confirms, validates likely performance.
- Data required for similar plant in similar operating scenario
- Data often not available or limited, so have limited assurance that proposed system will perform as expected/required

Validity / Integrity of Information

- Need to be sure that the information provided is appropriate, valid and suitable for use
- Manufacturers tend to make great claims, but can they be supported?
- Information comes from a wide range of disciplines, so need to be sure consultant or designer has access to and has used the necessary skills of a range of professions

It is not just the treatment plant so ...

 Need appropriate selection and design of both the plant and the land application area or discharge option

