

cet

- Absolute performance criteria for nutrients might be required:
 - e.g. NH₃-N 5 mg/L (annual median), 10 mg/L (maximum or 80th percentile) (EPA Vic), Total P 0.5 mg/L, or
 - Minimum percentage reduction e.g. 75% reduction in Total Nitrogen, in relation to influent, but
- What is most important is that the treatment plant removal and the land application area assimilation capacity (together) are sustainable

• pH should be within the range 6.5 - 8.5

Discharges to Water

- Discharge to waters was formerly approved by the EPA and older systems which discharge to waters are still licensed by the (EPA) e.g. Hunter River
- Generally, new private systems would not be approved to discharge to waters in NSW

Land Application of Effluent

- In the past, land application of effluent from package treatment plants was rather neglected by comparison with design and performance of the treatment plant itself
- Many of the older package treatment plants will have undersized and potentially poorly performing land application areas which would be unlikely to meet modern standards or performance requirements
- These are increasingly called into question as systems are inspected, reviewed and expanded

Guidelines

- Established guidelines for small domestic systems e.g. AS/NZS 1547:2012 and the "Silver Book" provide some suitable background for consideration of site and soil assessment, assigning loading rates and the sizing of land application areas
- Many of the principles apply to larger systems, but more attention to detail and a higher level of sophistication in the application of the principles is necessary to optimise design and maximise beneficial reuse of effluent and to avoid the problems becoming unsurmountable

Guidelines There are also guidelines primarily developed for large scale municipal treatment works which provide important background, particularly for land application of effluent from the larger package treatment plants e.g.

- Interim Guidelines for the Management of Private Recycled Water Schemes, NSW DWE, 2008, and
 The Utilisation of Treated Effluent by Irrigation, NSW
- EPA, 1995
- Various water balance approaches e.g. AS 1547:1994 and water balance computer packages e.g. MEDLI and many others
- Some NSW coastal Councils now using DAFs and automatically consider non-domestic systems high risk

Issues for Consideration There are a wide range of issues for consideration in land application area design and approval: Hydraulic load Organic load Nutrient load Nitrogen Phosphorus Public health issues Disinfection

- Contaminant pathways
- Buffer distances

Hydraulic Load

- Need to do a water balance
- Especially important in some NSW coastal locations where wet weather storage is a consideration. DAFs require daily water balances. Need appropriate climate data and consider the suitability of nearest Met. Station
- Synthetic data available Data Drill/SILO data
- Consider the relative merits of daily versus monthly data (daily balances less conservative than monthly)
- Need to understand crop factors

Package Treatment Plant Operation and Management Cessnock, NSW 8-9 June 2021

Organic Load

- Organic load generally not limiting unless effluent has high BOD (food industry waste, wineries, breweries etc.)
- Need to do a mass balance

Nutrient Load

- Nutrient load both N and P are major issues
- Nutrient load is commonly limiting
- Need to do nutrient balances
- These will commonly be more sophisticated than those used for small domestic systems if they are to optimise land application area design, but
 - They need to be based on sound data and done by experienced practitioners
- Beware simple nutrient modeling packages

Public Health Issues

- Important to consider the use to which land applied effluent is to be put (fit for purpose)
- Important to limit surface irrigation spray hazards:
 Spray height and distance, aerosolisation and wind drift
- Beware irrigation of crops for consumption
- No direct aerial irrigation of fruit and vegetable crops that are consumed uncooked
- Drip irrigation of stone fruit trees and vines is appropriate

et

Public Health Issues

- Consider the relative merits of surface and subsurface irrigation, particularly in the light of the need for and suitability of disinfection
- Subsurface drip irrigation reduces risk significantly
- Concerns about long term health and environmental effects of residual chlorine
- UV offers an alternative for disinfection, but need to build redundancy into system in case of lamp failure
- Also requires high clarity effluent (<1 NTU)

Public Health Issues

- Schedule irrigation on ovals, golf courses and school grounds for late afternoon or early evening to ensure maximum time interval (withholding period) between application and use
- Ensure sensitive receptors e.g. washing lines, pools, children's play areas etc. are separated from irrigation areas by appropriate buffer distances
- Ensure irrigation areas are suitably signed to warn of treated wastewater application

cet

Buffer Distances

- Many older land application areas were designed with inappropriate buffer distances
- Suggest adopt AS/NZS 1547:2012 risk based approach, or
- NSW Guideline values of:
 - 250m from domestic groundwater bores
 - 100m from permanent watercourses
 - 40m from intermittent watercourses and dams
 - 6m (up-gradient) and 3m (down-gradient) of property boundaries, driveways, swimming pools and buildings
- SCA buffer requirements more stringent

Irrigation of Effluent

- The components and configuration of an irrigation system are as crucial to effective operation as the area size
- Must be managed to minimise public health risks as effluent quality is not always consistent
- Inappropriate irrigation methods defeat the purpose of treating effluent to a higher standard
- The water and nutrient balance are only half of the design equation

- obtained (including a hydraulic design) prior approving a system
 Designers should be aware of suitable
- Designers should be aware of suitable components to compliment their designs

Irrigation Systems Common Issues

- Pumps are often of insufficient capacity to service appropriately sized irrigation areas, even when divided into smaller zones
- Common rotary sprinklers and spray heads operate correctly with ~4-10m head at the top of system and flow rates of 2-6L/min for each sprinkler operating
- Subsurface irrigation systems typically require a 10-30m head operating pressure

- Sprinkler operating head + friction loss in the pipe will almost always require most if not all of this head capacity (limited room for static lift)
- Uneven effluent distribution is a significant contributor to irrigation area failure
- Typical NSW Health domestic AWTS/STS system pumps may be undersized, a larger pump may be required
- A one size fits all approach to pumps not practical
- Proper hydraulic design essential for commercial scale systems (yet rarely required or done!)

Package Treatment Plant Operation and Management Cessnock, NSW 8-9 June 2021

Irrigation Systems Management

- Filtration of effluent should be considered essential to effective irrigation
- Cylindrical mesh filters commonly used for older surface irrigation (typically 150 mesh, 100 micron rated filters)
- Disc filters are essential for subsurface irrigation systems
- Good quality filters prevent build-up of bio-slimes and blockage of emitters
- Flushing also required

Irrigation Systems Application Area Management

- May need to rotary hoe or improve ground
- Divert run-on water
- Do not irrigate low growing crops which are not cooked before eating
- Erect warning signs
- Keep clear of clotheslines, swimming pools, barbeques, outdoor seating, picnic benches, children's play areas and other sensitive receptors

cet

Rule-of-Thumb Sizing Irrigation Systems

- While not trying to be prescriptive or site specific, the following information can provide a good "check" for irrigation area sizing
- The information is based on recent experience in temperate coastal areas of NSW and incorporates:
 - Mean monthly climate values (conservative)
 - Typical domestic wastewater flow rates and quality
 Appropriately conservative DIRs for a range of soil
 - types

