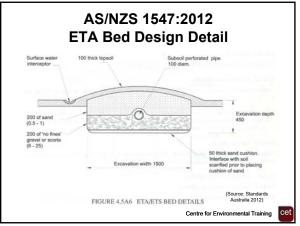
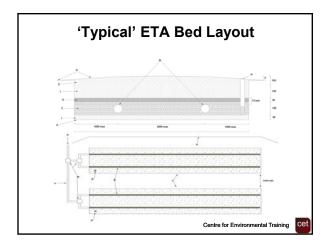
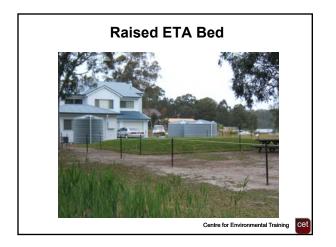
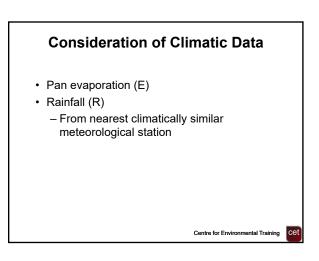
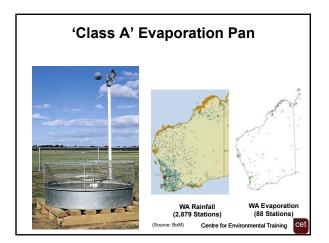

Centre for Environmental Training

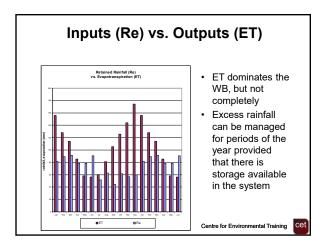

Centre for Environmental Training

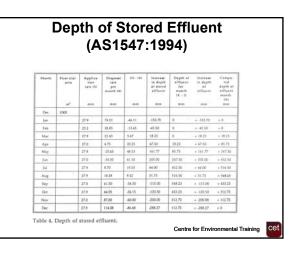


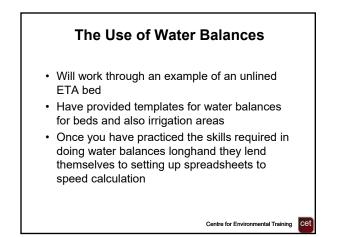


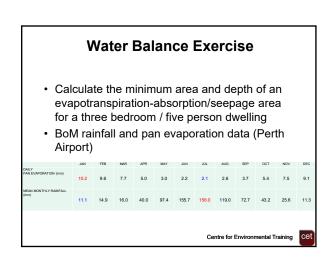








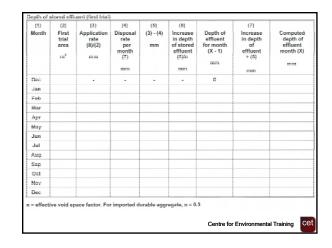



IX.	equ	irer	nen	t (A	51	547:	199	94)
Month.	Pan evapo- ration E	Evapotran opiration ET ET+0.25E	Raydall	Retained rainfall R, R,=0.758	LTAR per menth	Duposal rate per esceth	Elfluerer appliest per ricoth	Scae of any
	me			100	19/81	mm.	1	$-\pi^{2}$
jan .	207.7	155.8	109	81.75	0	74.01	27900	326-40
Feb.	170.8	128.1	119	\$9.25	0	38.85	25200	648.65
Mar	131.5	113.9	122	91.50	0	22.45	27900	1244.15
Apr	114.0	85.5	105	78.75	ii:	6.25	27000	4000.00
May	77.5	56.1	105	78.75	8	-20.63	27900	-1392.77
Jun	.75.0	56.3	121	90.75	0	-34.50	27000	-782.61
Jul.	82.6	60.5	49	51.75	0	8.70	27900	3206.90
Aug	106.5	11.4	84	63.00	0	18.36	27900	1518.37
Sep	141.0	105.8	34	44.25	8	61.50	27000	439.02
Oct	167.4	125.6	#2	61.50	0	64.05	27900	435.60
Nov	192.0	144.0	76	\$17.00	0	87.00	27000	310.34
Dec	232.5	174.4	80	60.00	8	114.38	27900	243.93

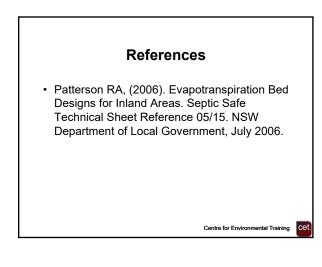
٦

Water Balance Exercise

 Three test pits excavated on the proposed disposal area indicate that the soils are 475mm weakly structured clay loam overlying moderately structured light clay to a depth of 2,000mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).


Centre for Environmental Training

Water Balance Exercise Calculate the evapotranspirationabsorption/seepage area using the worksheets provided on the following two pages.


• The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600mm with a minimum of 50mm freeboard (i.e. maximum depth of stored effluent is 550mm).

Centre for Environmental Training

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Month	Pan evaporation E mm	Evapo transpiration ET ET = 0.75E mm	Rainfall R mm	Retained rainfall R, = 0.75R mm	DLR per month mm	Disposal rate per month (3)-(5)+(6) mm	Effluent applied per month L	Size of area (8)/(7) m ²
Jan								
Feb								
Mar								
Apr								
May							(
Jun								
Jul								
Aug								
Sep								
Oct								
Nov								
Dec								
				First tria	aì area = a	verage mont	niy area =	m

Size of area	ć.	376.90	648.65	1244.15	4000.00	-1352.73	-782.61	3206.90	1518.37	439.02	435.60	310.34	243.93
Effluent applied per month	L	27900	25200	27900	27000	27900	27000	27900	27900	27000	27900	27000	27900
Disposal rate per month	шш	74.01	38.85	22.43	6.75	-20.63	-34.50	8.70	18.38	61.50	64.05	87.00	114.38
LTAR per month	шш	0	0	0	0	0	0	0	0	0	0	0	0
Retained rainfall R, R,=0.75R	шш	81.75	89.25	91.50	78.75	78.75	90.75	51.75	63.00	44.25	61.50	57.00	60.00
Rainfall R	шш	109	119	122	105	105	121	69	84	59	82	76	80
Evapotran -spiration ET ET=0.75E	шш	155.8	128.1	113.9	85.5	58.1	56.3	60.5	81.4	105.8	125.6	144.0	174.4
Pan evapo- ration E	шш	207.7	170.8	151.9	114.0	77.5	75.0	80.6	108.5	141.0	167.4	192.0	232.5
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

m ¹ Dec 1000 Jan Feb Mar Apr	tion rate (3)	rate pcr month (4)	5	in depth of stored effluent	Depth of effluent for month (X - 1)	Increase in depth of effluent	Compu- ted depth of effluent month
	шш	шш	шш	шш	шш	шш	шш
Jan Feb Mar Apr							
Feb Mar Apr	27.9	74.01	46.11	-153.70	, 0	+ -153.70	= 0
Mar Apr	25.2	38.85	-13.65	45.50	0	+ -45.50	= 0
Apr	27.9	22.43	5.47	18.23	0	+ 18.23	= 18.23
	27.0	6.75	20.25	67.50	18.23	+ 67.50	= 85.73
May	27.9	-20.63	48.53	161.77	85.73	+ 161.77	= 247.50
Jun	27.0	-34.50	61.50	205.00	247.50	+ 205.00	= 452.50
Jul	27.9	8.70	19.20	64.00	452.50	+ 64.00	= 516.50
Aug	27.9	18.38	9.52	31.73	516.50	+ 31.73	= 548.23
Sep	27.0	61.50	-34.50	-115.00	548.23	+ -115.00	= 433.23
Oct	27.9	64.05	-36.15	-120.50	433.23	+ -120.50	= 312.73
Nov	27.0	87.00	-60.00	-200.00	312.73	+ -200.00	= 112.73
Dec	27.9	114.38	-86.48	-288.27	112.73	+ -288.27	= 0

Table 4. Depth of stored effluent.

WATER BALANCE ANALYSIS WORKSHOP SESSION

Calculation of evapotranspiration-absorption/seepage area size by the water balance method.

Using the following information using your Course Notes, calculate the minimum area and depth of an evapotranspiration-absorption/seepage area for a three bedroom / five person dwelling.

Bureau of Meteorology rainfall and pan evaporation data for the nearest station (Perth Airport) is provided below.

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
DAILY PAN EVAPORATION (mm)	10.2	9.6	7.7	5.0	3.0	2.2	2.1	2.6	3.7	5.4	7.5	9.1
MEAN MONTHLY RAINFALL (mm)	11.1	14.9	16.0	40.0	97.4	155.7	156	119.0	72.7	43.2	25.6	11.3

Three test pits excavated on the proposed disposal area indicate that the soils are 475mm weakly structured clay loam overlying moderately structured light clay to a depth of 2000mm. Use the recommended design loading rate derived from Table L1 of AS/NZS 1547:2012 (see the Field Workshop and Design Exercise section of these Course Notes).

Calculate the evapotranspiration-absorption/seepage area using the worksheets provided on the following two pages.

The evapotranspiration-absorption area is to be constructed of imported aggregate, is to have a maximum depth of 600mm with a minimum of 50mm freeboard (i.e. maximum depth of stored effluent is 550mm).

Calculation of evapotranspiration-absorption area size by water balance method

4th -4 C i J

(6)	Size	of area (8)/(7)		m ²														m ²
(8)	Effluent	applied per	month		_													hly area =
(7)	Disposal	rate per month	(3)-(5)+(6)		mm													First trial area = average monthly area =
(9)	DLR	per month		mm														al area = a
(5)	Retained	rainfall	Ŗ	$R_{r} = 0.75R$	mm													First tria
(4)	Rainfall	R		mm														
(3)	Evapo	transpiration	ET	ET = 0.75E	mm													
(1) (2)	Pan	evaporation	ш		mm													
(1)	Month					Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	

	(7)(7)Depth of effluentIncrease in depthComputed depth of depth of of effluent(X - 1)of effluenteffluent mmmmmm	0												
	(6) Increase in depth of stored effluent (5)/n mm													
	(4) (5) Disposal (3) - (4) rate mm per mm (7) mm													
Depth of stored effluent (first trial)	(3) Application rate (8)/(2) mm	1												
th of stored efi	(1) (2) Month First trial area m ²	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

n = effective void space factor. For imported durable aggregate, n = 0.3